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Abstract

This paper uses the text of patents and machine learning techniques to classify
patent claims as product or process innovations for U.S. publicly traded manufacturing
firms. I document that the aggregate process share of innovation was on a large and
secular decline from 1980-2015, falling from 26% in 1980 to 12% in 2015. I find that
the process share is low at the beginning of a firm’s product life cycle, peaks in the
middle before plateauing at an intermediate level at the end of the life cycle. The code
and data underlying the process classification are publicly available to encourage future
research in this area.
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1 Introduction

Firms engage in product innovation by introducing new product varieties. They also

create process innovations by altering the assembly of their products. Understanding what

factors incentivize a firm to choose product or process innovation along with the economic

implications of the firm’s choice are topics which have received substantial attention.1 To

facilitate further progress on these topics, this paper introduces a novel dataset2 which

classifies all the independent publication claims of patents granted between 1980-2015 to

publicly traded U.S. manufacturing firms as product or process innovations.

To create the classification, I hand classify approximately 40,000 publication claims as

product or process innovations using a consistent and economically based definition of process

innovation. Using these hand classified claims, I train machine learning (ML) classifiers to be

able to predict whether a claim is a product or process innovation based on features present

in the claim’s text. The ML classifiers are able to predict whether a claim is a product or

process innovation with 85% balanced accuracy.

With this data I describe the aggregate time trends in the process share of innovation.

I find that the process share of innovation has been on secular decline since 1980, falling

from 26.3% in 1980 to 11.7% in 2015. From 1980-2000 the process share fell from 26.3% to

19.1% with the decline being driven by between industry reallocation as patenting moved

from industries with high process shares to lower process shares. From 2000-2015 the process

share fell from 19.1% to 11.7% and is primarily accounted for by within industry declines in

the process share.

Next, I examine how the process share of innovation varies over a firm’s life cycle. I

find that firms start out with low process innovation intensity as they focus on developing

their product(s). Next, they enter a stage of process optimization where their process share

of innovation peaks. Finally, they enter a stage of intermediate process intensity as their

product(s) mature and then ultimately decline. The results are consistent with the life cycle
1For example, Dhingra 2013 examine the implications of trade liberalization on welfare, finding differing

effects of trade liberalization on product and process innovation. Aghion et al. 2023 build a model which
implies that R&D subsidies should be allocated towards firms who have high markups due to higher quality
product innovations as opposed to firms who have high markups due to higher process efficiency.

2Referred to as the Economically Based Product Process Patent Dataset (EPP)
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theories of Klepper 1996 and Utterback and Abernathy 1975. Further, I find a positive

association between firm size and process innovation intensity which supports the view that

the returns to process innovation are increasing in the output of the firm (Cohen and Klepper

1996).

This paper contributes substantially to the literature concerned with measuring product

and process innovation. In one of the first large scale efforts to use patent data to measure

product and process innovation, Scherer 1982 created data on industry-level product and

process innovation by hand classifying the industry of origin and industry of use for 15,112

patents. The methodology of this paper is inspired by the hand classification of Scherer

1982, but differs in its use of ML classifiers to classify patents I have not hand classified.

There have been several modern attempts to classify patent claims as product or process

innovations (Banholzer et al. 2019; Bena and Simintzi 2022; Ganglmair et al. 2022). My clas-

sification methodology and results depart significantly from these classifications. Regarding

methodology, other classifications generally use keyword approaches where they look for

the presence of process keywords3 in the patent claim text. These classifications capture

the United States Patent and Trademark Office (USPTO) definition of a process innova-

tion which “define steps, acts, or methods to be performed.” In contrast, I define a patent

claim as a product innovation if it describes a physical object that the firm sells with no

discussion about how the object is created. All other claims are process innovations. Using

this economically grounded definition necessitates a difference in classification methodology

leading to my use of hand classification paired with a rich set of text features to train ML

classifiers. I present further qualitative evidence that my classification is better able to cap-

ture the economic concept of a process innovation relative to the currently available process

classifications.

As a result of using an economically grounded definition of process innovation and a

different classification methodology, I document a substantially different story for the process

share of innovation over time. While the data underlying Banholzer et al. 2019, Bena and

Simintzi 2022, and Ganglmair et al. 2022 all indicate a substantial secular increase in the

process share of innovation from 1980-2015, I find a secular decline. I also find evidence in
3For example, “method” and “process” are flagged as process keywords.
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favor of the life cycle theories of Klepper 1996 and Utterback and Abernathy 1975 whereas

the evidence is statistically insignificant when using the data from Banholzer et al. 2019, Bena

and Simintzi 2022, and Ganglmair et al. 2022. Finally, my data reveal a positive association

between firm size and process intensity, but this positive association disappears when using

the data of Banholzer et al. 2019, Bena and Simintzi 2022, and Ganglmair et al. 2022. These

findings indicate that an economically based definition and accurate classification of process

innovation is crucial for testing theories related to product and process innovation.

The findings in this paper also contribute to our understanding of how patenting and

innovation have evolved over long periods of time. Researchers have documented that there

has been a decline in scientific research at large corporations (Arora, Belenzon, and Patacconi

2018), an increase in team size (Jones 2009), a decline in research productivity (Bloom et al.

2020), and an increase in patent scope (Marco et al. 2019). This paper documents the secular

decline of the process share, highlighting that innovative efforts in the U.S. are increasingly

being devoted towards product innovation.

Finally, this paper adds to our understanding of innovation over the life cycle of the firm.

Klepper 1996 builds a model of innovation over the product life cycle and predicts that over

time producers devote increasing effort to process innovation relative to product innovation.

The intuition behind the result is that process innovation scales with firm size in the sense

that a given process innovation will be more valuable if it can be applied in the production of

a larger quantity of output (Cohen and Klepper 1996). As firms move through the product

life cycle they grow in size, making process innovation increasingly more appealing relative

to product innovation.

Utterback and Abernathy 1975 theorize that product innovation will be high at the begin-

ning of the product life cycle when the product is nonstandard and its technical functionality

is being refined. As the product becomes standardized and more competition takes place

there is increasing focus on cost minimization and the amount of product innovation falls.

On the other hand, there is little process innovation at the beginning of the life cycle as

the product has not been refined and is being produced in small quantities. As competition

increases and the product becomes standardized, firms increasingly focus on process innova-

tion as they seek to lower their costs and take advantage of their growing scale. In the final
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stages of the life cycle, when the product is mature, both the product and the production

process are highly developed and integrated, making any alterations to the production pro-

cess costly. In this stage, process innovation falls from its peak but remains above the low

levels seen at the beginning of the life cycle.

Using my classification of patents as product or process innovations along with an es-

timation of where each firm is located in the product life cycle (Hoberg and Maksimovic

2022), I find that the patents of firms have the lowest process share at the beginning of the

life cycle when they are focused on product development, followed by the highest process

share at the middle stage of the life cycle when they are focused on process improvement,

and an intermediate process share at the end of the life cycle when the product is mature.

This aligns well with the Utterback and Abernathy 1975 model of innovation over the prod-

uct life cycle. I also find a positive relationship between firm size and the process share

of innovation, even conditioning on the location of the firm in the product life cycle. This

provides support for firm size as being a mechanism for why the process share increases over

the life cycle (Klepper 1996; Cohen and Klepper 1996). When I examine the same question

using the patent classifications provided by Banholzer et al. 2019, Bena and Simintzi 2022,

and Ganglmair et al. 2022 I do not find any significant relationship between the product life

cycle or firm size and the process share of innovation.

2 Building Product and Process Patent Data

2.1 Sample Selection

This study constructs its novel classification of patent claims as product or process inno-

vations using the DISCERN database, a match between USPTO patents and COMPUSTAT

firms which is described in Arora, Belenzon, and Sheer 2021. The data provide the most

comprehensive and accurate match of USPTO patents to publicly traded U.S. firms that is

currently available by updating the National Bureau of Economic Research (NBER) patent

database (Hall et al. 2001) with all patents granted from 1980 to 2015. To create the data,

Arora, Belenzon, and Sheer 2021 match all COMPUSTAT firms ever having conducted R&D
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to patents on the basis of assignee and firm name. The DISCERN data improve upon Hall

et al. 2001 by tracking parent companies and subsidiaries in the COMPUSTAT data, as

well as how name changes and mergers and acquisition activity may affect subsidiaries. I

aggregate to their identification of parent companies when conducting firm level analysis.

The DISCERN database includes patents of publicly traded companies who are not man-

ufacturing firms. As the distinction between product and process innovation is most salient

for manufacturing firms, I limit my sample to the patents of firms of predominantly operate

in manufacturing industries over their lifetime. A simple way to define whether a COMPU-

STAT firm is a manufacturing firm is to check if their two-digit SIC code falls within 20-39.

I depart from this convention primarily because COMPUSTAT industry codes are based on

the most current financial statements of the firm. For firms who exist for long periods of

time and change their products, the current COMPUSTAT industry classification may not

accurately reflect whether the firm primarily operated in manufacturing over its life. Instead,

I use COMPUSTAT business segment data to classify a firm as primarily engaged in manu-

facturing if over 50% of its deflated sales from 1980-2015 are in manufacturing industries. I

also remove 38 firms who fit my initial definition of a manufacturing firm, but whose patents

don’t consistently correspond with their manufacturing activity.4 Table A.1 shows that my

definition of a manufacturing firm closely aligns with the standard SIC classification.5

After removing the patents of firms who are not manufacturing firms, I webscrape Google

Patents to obtain characteristics of all the remaining patents in my sample. From this I ob-

tain the patent’s title, Cooperative Patent Classification (CPC) code, and publication claim

text. In order to make the problem of classifying patents as product or process innovations

tractable, I limit to firms whose primary 4-digit Standard Industrial Classification (SIC) code

belongs in the top 100 patenting SIC codes. This restriction allows me to retain over 95%

of the manufacturing patents in the original sample, but it reduces the number of industries

from 272 to 100, making the classification problem significantly easier as I am interested in

ensuring that I am able to accurately classify patent claims within each industry. The result-
4One firm that I designate as not a manufacturing firm is IBM, due to their shift from IT manufacturing

toward software services
5Some examples of firms who I classify as manufacturing, but would not be classified as manufacturing

under the standard SIC definition are: General Electric, Honeywell, and Monsanto.
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ing sample includes 1,016,729 patents assigned to 3,092 manufacturing firms, which captures

75% of the DISCERN database. This is consistent with the findings of Autor et al. 2020

who report that more than three-quarters of corporate patents in their sample are granted

to manufacturers.

2.2 Defining Product and Process Innovation

I define a product innovation as an innovation that describes a physical object that a firm

sells in the output market with no discussion about how the object is created. All other in-

novations are defined as process innovations. Scherer 1984 created one of the first large hand

classification of product and process innovations from patent data and similarly conceived

of process innovations as those that result in “new or improved production processes used

internally within the performing company” whereas product innovations create or improve

“new products” that are “sold to others.”

Other modern classifications of patents into product and process innovations rely on

the USPTO definitions of product and process innovations (Banholzer et al. 2019; Bena

and Simintzi 2022; Ganglmair et al. 2022). The USPTO defines a product innovation as

an invention that is directed to either a machine, manufacture (article created from raw

materials) or composition of matter.6 On the other hand, process innovations define steps,

acts, or methods to be performed and include a new use of a known process, machine,

manufacture, composition or material. There are two types of process innovations. First, is

an innovation that describes the use of an entity to achieve a technical effect. Second, is an

innovation that describes a process for the production of a product.

In short, the USPTO definitions focus more on the distinction between nouns (products)

and verbs (processes) whereas my definition focuses on whether the object of the invention

is being sold or not. Banholzer et al. 2019 note the difference between the USPTO definition

of product and process claims and a more economically based definition when they say:

The language used in the examination guidelines differs from the language used by

economists...it is very difficult to determine whether product and process claims
635 U.S.C. §101 states that a patent can be obtained for a process, machine, manufacture, or composition

of matter. Machines, manufactures, and compositions of matter can be categorized as products.
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as defined by the guidelines can serve the typical functions economists have in

mind when talking about product and process inventions.

This classification seeks to overcome these issues and create an economically grounded

classification of product and process innovation. To more concretely see how these definitions

work in practice, consider three patents granted to Micron Technology, a semiconductor

firm specializing in computer memory production. The semiconductor industry is highly

innovative, having the most patents of any industry in my data. As an example of a product

patent, consider U.S. patent number 6952359, titled: “Static content addressable memory

cell” and pictured in Panel (a) of Figure A.1.

This patent is for a content addressable memory cell, a product that Micron sells. The

motivation for the patent is described in the text of the patent which says: “There is a...need

for an alternative CAM cell design that is relatively small and yet has acceptably low soft-

error rates.” There is no discussion of how the product is created, making this patent

a pure product innovation, meant to address shortcomings in currently available product

offerings. According to the USPTO definition, this patent would also be classified as a

product innovation since it refers to a manufacture.

Now consider Panel (b) of Figure A.1 which depicts U.S. patent number 6051074 assigned

to Micron Technology that has the title: “Thermal conditioning apparatus.” The description

of the patent’s CPC classification reads: “Apparatus specially adapted for handling semi-

conductor or electric solid state devices during manufacture or treatment thereof...” Further

the patent goes on to state: “A problem that arises with the prior art...is that when the

heating or cooling assemblies must be repaired or replaced, extensive and costly amounts

of downtime occur.” From the CPC description and the text of the patent, it is clear that

this machine is used to more effectively produce semiconductors. According to my definition

this invention is a process innovation since it describes a physical object that Micron does

not sell but is used to produce physical objects that Micron will sell. But according to the

USPTO definition, this patent would be classified as a product innovation since it is directed

at a machine. Indeed, Banholzer et al. 2019, Bena and Simintzi 2022, and Ganglmair et al.

2022 all classify this patent as a pure product innovation, in accordance with the USPTO

definition whereas I classify it as a pure process patent.
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But not all inventions are strictly product or process innovations. Consider, U.S. patent

number 7271654, which has the title: “Low voltage CMOS differential amplifier” and is shown

in the bottom panel of Figure A.1. From the title, it would appear that the patent is for an

object that Micron Technology will sell, yet the second sentence of the abstract states that:

“there is provided a method of manufacturing a device...” This indicates that the patent

contains information about how this object is constructed. In this sense, the patent has

both a product component since it describes features of a physical object that Micron will

sell, but it also has a process component since it describes how to manufacture the product.

In order to break patents down into individual components that can be classified as

product or process innovations, I turn to the publication claims of the patents. U.S. patents

contain individual publication claims describing precisely what they protect. The claims

enumerate each invention’s individual innovations.7 According to the USPTO it is improper

for a single patent claim to be directed to both a product and a process.8 This allows me

to individually classify each claim as a product or process innovation. The current patent of

consideration, U.S. patent number 7271654, has four independent claims:

1. A method of manufacturing a device comprising...

2. A device comprising...

3. A method of operating a set of differential pairs comprising...

4. An input buffer comprising...

The first claim refers to a process innovation since it discusses a process used to create

an object that the firm will sell. According to the definition used in this paper, the next

three claims pertain to product innovations that describe the CMOS differential amplifier,

along with descriptions about how to use it. But according to the USPTO definition, the

third claim would be a process claim since it refers to a “method to be performed,” despite

the fact that it is describing how to use the product of a firm. To capture the fact that
7Claims can be independent or dependent, with each independent claim standing on its own. Because

dependent publication claims rely on independent claims, this paper restricts its attention to independent
claims.

8Ex parte Lyell, 1990 Pat. App. LEXIS 14, *12 (Bd. Pat. App. & Interferences August 16, 1990).
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this patent contains both product and process innovations, I assign this patent a process

share of 0.25 where the process share is the proportion of a patent’s claims that are process

innovations. In the previous two examples, all the claims were either product innovations, as

in the case of the memory cell in U.S. patent number 6952359, or process innovations, as in

the case of the thermal conditioning apparatus in U.S. patent number 6051074. This gives

the preceding patents a process share of 0.0 and 1.0 respectively. I apply this method of

individually classifying patent claims as product or process innovations and then calculate a

product share for each patent. This method captures the fact that patents can contain both

product and process innovations.

2.3 Classifying Patents

The final hurdle is determining a method of systematically, accurately, and efficiently

classifying the over one million patents in my sample. There are two approaches I could

take. The first is specifying an algorithm for deciding whether a publication claim is a

product or process innovation. In the current literature, the algorithm is often an indicator

function that classifies the claim as a process innovation when certain keywords are in the

claim text (Banholzer et al. 2019; Bena and Simintzi 2022; Ganglmair et al. 2022). I could

follow the spirit of this approach and create a more complex classification rule that takes

into account other features of the patent such as the CPC code, firm, industry, and year.

Alternatively, I could hand classify a sample of claims and then use predictive methods,

such as machine learning, to predict the status of claims that I have not hand classified.

This approach has been used recently in the economics literature to classify various types

of patents but has not been used for the distinction between product and process patents

(Chen et al. 2019; Clemens and Rogers 2020; Lerner et al. 2021).

I chose the latter approach for several reasons. First, after reading several hundred

patents, it was clear to me that the functional form which would best identify whether

a claim is a product or process innovation is a very complicated function that would be

extremely difficult for me to specify. For example, the phrase “a method” followed by words

such as “of” or “comprising” and then followed by a verb often indicates that the claim

should be classified as a process innovation. This is true in the case of U.S. patent number
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8185230, assigned to Advanced Micro Devices Inc, where the first claim states: “a method

comprising: ... performing a first fabrication process on the semiconductor device...” Since

Advanced Micro Devices sells semiconductors, the claim describes a process used to create

an object they will sell. This makes the claim a process innovation. Although the presence of

keywords such as “a method” often indicate a claim is a process innovation, this is not always

the case. For example, the last claim of U.S. patent number 8185666, assigned to Texas

Instruments, states: “A method of executing a single instruction, comprising...comparing the

array index value to the array size value...” This is a claim related to executing instructions on

a microprocessor. Since Texas Instruments is a company that sells semiconductors, the claim

describes a product that they will sell and should be classified as a product innovation despite

the presence of the process keyword “a method.” This example illustrates the difficulty in

creating a pre-determined rule that could distinguish between these situations.

To classify claims as product or process innovations, I start by hand classifying the claims

of 100 patents for each of the 100 4-digit SIC industries. I classify industries separately since

there is significant heterogeneity in how vocabulary is linked with the distinction between

product and process innovations. For industries where prediction was less accurate, I classi-

fied more claims in order to improve the accuracy and precision of the prediction. My hand

classification process involved evaluating each claim in the sample, one industry at a time.

For each new firm where I was unfamiliar with the products the firm sold, I retrieved several

of their 10-Ks and read their product description section in order to understand what their

final products were and how they may have evolved over time. I would then read the text

of each claim, examining whether it met the definition of a product or process innovation

as outlined above and reviewing the 10-Ks if I needed more information to make a decision.

In the end, I hand classified 40,682 claims (over 14,000 patents). I then cleaned the claims

text of all patents by removing stopwords, punctuation, whitespace, and numbers. Further,

I lemmatize the text which involves reducing each word to its lemma in order to analyze it

as a single concept. For example, “forming” would be transformed to its lemma, “form.”

For each industry, I then assess the performance of sixty different specifications.9 Each
9For some industries, I pool together several similar industries in order to increase accuracy and precision.

Whenever industries are pooled together, the diagnostic statistics only reflect how well the model is able to
predict for the focal industry.
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specification has three components: a ML classifier, a text feature set (which form the

independent variables), and dummies for whether to drop certain coefficients. I use three

different ML classifiers: multinomial naive bayes, complement naive bayes, and a passive-

aggressive classifier developed by Crammer et al. 2006. I experiment with ten different text

feature sets and whether to keep all features in a given feature set or drop features that are

below median “importance” in predicting the outcome.10 In total this gives me 3× 10× 2 =

60 specifications for each industry. In Appendix A.1, I include a comprehensive list of the

elements that make up each specification. I now turn to discussing how I choose a model for

each industry and how I validate the quality of my classifications.

2.4 Model Validation

2.4.1 Quantitative Validation

For each of these 60 specifications, I assess its quality using repeated k-fold cross valida-

tion where I choose k = 5 (Raschka 2020). This process works by taking 20% of my hand

classified claims data for the industry as the evaluation sample. I then fit the model to the

other 80% of the data. I use this fitted model to make predictions about whether each claim

in the 20% evaluation sample is a product or process innovation. I repeat this procedure 5

times so that each claim is in the evaluation sample exactly once. I then repeat this entire

procedure k = 5 times, randomly shuffling the data each time. In the end, each claim will be

classified five times. It is important to note that each time a model is fitted, the training is

“one-shot” in the sense that the model finds the optimal predictive coefficients only using the

data it was most recently exposed to.11 After running this procedure for all 60 specifications,

I choose the model that has the highest correlation coefficient between the vector of binary

hand classifications and the vector of binary predictions. In a final step, I estimate seven

more specifications where I add various features to the final selected model which again are

described in detail in Appendix A.1. If any of these extra seven specifications obtain a higher

correlation coefficient between the truth and the prediction then the new model is chosen;
10Appendix A.1 lists all the features used. Importance is determined using a meta-transformer called

“SelectFromModel” that is available in Python’s scikit-learn package.
11This is in contrast to neural networks which loop through the training data multiple times and iteratively

tweak the coefficients, building upon what was seen prior in order to minimize the loss function.
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otherwise I retain the previously chosen model. I use the correlation coefficient to assess

the performance of each model as it effectively trades off type-I and type-II error, and it

performs well in the case of imbalance, where one category far outnumbers the other (Chicco

and Jurman 2020). This is relevant in my case since most industries are imbalanced, with

fewer process innovations. In practice, the model with the highest correlation coefficient of-

ten achieves the highest balanced accuracy, which is another popular evaluation metric that

also performs well in the presence of imbalance and is used in Clemens and Rogers 2020.

Before displaying aggregate statistics on quality of my match across industries, Table 1

presents the confusion matrix from the model that achieved the highest correlation coefficient

for the most innovative industry in my data, the semiconductor industry. As with all the

models, it was evaluated using 5-fold cross validation meaning that whether each of my 2,332

hand classified claims was a product or process innovation was predicted five times. This

is reflected in the 11,660 total classifications in the bottom right-hand corner of Table 1.

The row and column labeled “Total” respectively reflects the number of true and predicted

claims falling into each category, where the true status of the claim is determined by my hand

classification and the prediction is determined by the selected ML model. For example, 9,784

of the claims in the data where predicted to be product claims while only 9,125 were truly

product claims. Of the total predicted product claims, 9,018 (92.2%) of the claims that were

predicted to be product claims were actually product claims while 766 (7.8%) were actually

process claims. This captures “Product Precision” which is defined as the share of claims

that are predicted to be product claims which are truly product claims. “Process Precision”

is similarly defined and comes in at 94.3%, indicating that when the model predicts that

a claim is a process claim, it is correct 94.3% of the time.12 “Recall” refers to a model’s

ability to find objects of a specific category, with “Product Recall” being defined as the

share of claims which are truly product claims that are predicted to be product claims.

Product recall is high at 98.8%, indicating that nearly all the claims which are truly product

claims have been identified by the model.13 “Process Recall” is substantially lower at 69.8%,

indicating that nearly one third of claims which were truly process were not identified as
12This is calculated as 1,769

1,876 = 94.3%
13This is calculated as 9,018

9,125 = 98.8%
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Table 1: Semiconductor Industry Confustion Matrix (SIC 3674)

Prediction

Product Process Total

Product 9,018 107 9,125
Truth Process 766 1,769 2,535

Total 9,784 1,876 11,660

Notes: This table presents a confusion matrix for the semiconductor (SIC 3674)
industry. Rows correspond to counts of publication claims that were hand clas-
sified as product or process publication claims. Columns correspond to counts
of publication claims that were classified as product or process innovations by
the machine learning classifier. I hand classified the claims of 2,332 semicon-
ductor patents, leading to 2,332*5 = 11,660 predictions since I am using 5-fold
repeated cross validation. Process recall is defined as the fraction of claims
which are truly process that are predicted to be process. This is calculated as
1,769
2,535 = 69.8%. Product recall is defined in an analogous way and receives a
score of 9,018

9,125 = 98.8%. Process precision is defined as the fraction of claims
that are predicted to be process which are truly process. This is calculated as
1,769
1,876 = 94.3%. Product precision is defined in an analogous way and receives a
score of 9,018

9,784 = 92.2%. Balanced accuracy is the unweighted average of product
and process recall and is 69.8+98.8

2 = 84.3%

process claims by the model.14 Balanced accuracy combines recall across both classes and is

the unweighted average of product recall and process recall and comes in at 84.3%. Balanced

accuracy intuitively captures the notion that a good model will be able to recall large shares

of all classes. Overall, the results from the confusion matrix indicate that the selected model

performs well in classifying product and process innovations but struggles by systematically

classifying a portion of the process claims as product claims.

With this illustration of the various diagnostic statistics in mind, Table 2 displays the

results across industries where, for each industry, I select the model with the highest cor-

relation coefficient and then perform 5-fold repeated cross validation for each specification.

The summary statistics are calculated using weights where the weights correspond to the

number of patents in the industry.
14This is calculated as 1,769

2,535 = 69.8%
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Table 2: Prediction Diagnostics

Mean St. Dev. 25% 50% 75%
Correlation Coefficient 0.74 0.09 0.65 0.77 0.80
Process Recall 0.73 0.13 0.65 0.77 0.81
Product Recall 0.97 0.03 0.96 0.98 0.99
Process Precision 0.84 0.11 0.81 0.85 0.91
Product Precision 0.95 0.05 0.94 0.95 0.97
Balanced Accuracy 0.85 0.06 0.81 0.86 0.89
Observations 100

Notes: This table presents summary statistics across the 100 4-digit SIC
industries weighted by the number of patents in the industry. The correla-
tion coefficient is the correlation between the vector of publication claims
predictions and true classifications. Process (product) recall refers to the
fraction of true process (product) claims that were correctly classified as
process (product). Process (product) precision refers the fraction of pub-
lication claims that were predicted as process (product) that are truly
process. Balanced accuracy is defined as the unweighted mean of product
and process recall.

I achieve a mean correlation coefficient of 0.74 with a standard deviation of 0.09 across

industries and balanced accuracy of 85%. One thing to notice from Table 2 is that process

recall is lower than process precision, meaning that with respect to process innovations

the ML models are making more type-II (false negative) errors than type-I (false positive).

This is consistent with what was seen in the Table 1, the selected model has a hard time

recalling all the process claims. To contextualize these results, I compare them to two

patent categorization projects in the economics literature. Chen et al. 2019 assign financial

patents to FinTech technologies and Clemens and Rogers 2020 categorize various features

of prosthetic device patents. The diagnostic statistics in Table 2 exceed those of Chen et

al. 2019 across all reported metrics, but Clemens and Rogers 2020 are able to achieve a

balanced accuracy above 90%, exceeding my 85%. Therefore, the quality of my classification

falls between these two patent classification projects.

To further examine the quality of the match, Panel (a) of Figure 1 examines how the

process share in the hand classified and ML classified samples differs across industries where

the hand classified sample comprises all the patents in an industry which I hand classify

and the machine learning classified sample comprises the remaining patents in the industry

which have not been hand classified. The process share for a group is defined as the mean
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process share across patents in the group. The points cluster around the 45 degree line with

no industries being clear outliers, indicating that the mean process share within industries

aligns well across the hand classified and machine learning samples. Panel (b) compares

the process share in the hand classified and ML classified groups across time. Both series

follow each other and display a steady downtrend over time with the hand classified sample

exhibiting more variation from year to year which is consistent with the hand classified

sample being much smaller than the ML classified sample. Figure A.2 confirms that the

quality of the classification does not vary significantly over time as the aggregate correlation

coefficient and balanced accuracy remain steady from 1980-2015.

Figure 1: Classification Robustness

(a) Process Share by Industry (b) Process Share over Time

Notes: The process share on a given patent is defined as the proportion of a patent’s claims that are process
innovations. Panel (a) displays the mean process share across industries with the 45 degree line corresponding
to the same process share in the hand classified and ML classified data. Panel (b) displays the mean process
share over time for both the ML and hand classified data.

2.4.2 Qualitative Validation

In the three Micron patents shown in Figure A.1, we saw that my definition of product

and process innovation yielded different hand-classifications relative to the USPTO based

definitions that are used in other classifications of product and process innovations (Ban-

holzer et al. 2019; Bena and Simintzi 2022; Ganglmair et al. 2022). To see if this distinction

came through in claims that were classified by the machine learning classifiers, I took a ran-

dom set of patents where the Banholzer et al. 2019, Bena and Simintzi 2022, and Ganglmair

et al. 2022 product shares disagreed with my machine learning classified product share by
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at least 0.5. Consider the first of these, U.S. patent number 5086041 assigned to Monsanto

Co. and falling under the NBER drugs & medical category. Its first claim is:

A method for achieving prolonged release of a biologically active somatotropin

into the circulatory system of an animal which comprises parenteral administra-

tion...

This claim is classified as a product claim by my ML classifier, while the presence of

the word “method” causes it to be classified as a process innovation for Banholzer et al.

2019, Bena and Simintzi 2022, and Ganglmair et al. 2022. The claim describes a drug

Monsanto sells and does not mention method of producing the drug. The claim is therefore

a product innovation in the economic sense. Misclassifying product innovations as process

innovations is not isolated to drug and medical patents; it is also prevalent in the computer

and communications category. Consider U.S. patent number 6469707, assigned to NVIDIA

Corp who operates in the semiconductor industry. The first claim of this patent is:

A method for efficiently rendering and displaying color intensity information of

pixels in a computer system, the pixels including a plurality of fragments, the

method comprising the steps of...

Describing a computational product using language that is commonly found in process

innovations is very prevalent in computer and communication patents. Given that NVIDIA

Corp makes graphical processing units, this claim is clearly a product innovation according

to my definition, but it is identified as a process innovation using the USPTO definition since

it relates to a “method to be performed.” I inspected ten randomly selected patents in total

and found that the patterns outlined in these two selected examples are common and that

my ML classifiers are more accurately able to distinguish product and process innovations

even for claims where keywords used by Banholzer et al. 2019, Bena and Simintzi 2022,

and Ganglmair et al. 2022 would indicate that the claim is a process innovation. This

suggests that my classification contains significantly fewer cases where product innovations

are misclassified as process innovations according to the economic definition that I laid out.
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How large is this systematic misclassification? Figure 2 plots the mean process share

by year across broad six-digit NBER categories of patents using my classification and the

classifications of Banholzer et al. 2019, Bena and Simintzi 2022, and Ganglmair et al. 2022.

Figure 2: Comparison with Alternative Product/Process Classifications

(a) Chemical (b) Computers & Comm (c) Electrical & Electronics

(d) Drugs & Medical (e) Mechanical (f) Other

Notes: Panels (a)-(f) of this figure plot the process share over time from my classification (solid navy line),
the Banholzer et al. 2019 classification (dashed green line), the Bena and Simintzi 2022 classification (dashed
red line), and the Ganglmair et al. 2022 classification (dashed yellow line) by NBER six-digit category.

Note that the process shares in the three classifications which use the USPTO definition of

product and process innovation (Banholzer et al. 2019; Bena and Simintzi 2022; Ganglmair

et al. 2022) are almost indistinguishable in every NBER category. However, they exhibit

significant differences with my classification. The difference in the computer and commu-

nication category is particularly stark as the classifications using the USPTO definition of

product and process innovations all exhibit a large and steady increase in the process share.

In contrast, my classification has a small process share that remains steady over time. This

finding is consistent with my qualitative examination of the NVIDIA patent where I found

that my ML classification was able to identify the innovation as a product innovation even

in the presence of a process keyword. Given that the use of process keywords to describe

a firm’s products is particularly common in the computer and communications sector, the

divergence in classifications is not surprising. In the drugs and medical category, all four
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classifications exhibit flat trends, but there is a significant level difference in the share of

process innovations between my measure and the USPTO based measures. Again, the lower

process share in my data is consistent with my qualitative findings that many pharmaceuti-

cal products use process language to describe how they work. The other categories exhibit

more similarity in levels, but in all cases my measure exhibits a steeper decline relative to

the USPTO based classifications. The results presented in Figure 2 indicate that the mis-

classification of product innovations as process innovations is not an isolated occurrence but

is large and systematic, especially in the computer & communications and drug & medical

categories.

In order to help provide some color to the data, Table 3 lists the industries with the

highest and lowest process shares.15 The industry with the second-highest process share

is petroleum refining which is consistent with Cohen and Klepper 1996 who use a set of

hand classified patents in 1974 and comment that petroleum refining firms spend almost

three-quarters of their total R&D on process innovations. Other industries with high shares

of process innovation include industries engaged in metal, food, and chemical manufactur-

ing. On the other hand, industries with low process shares are generally those producing

machinery, highly specialized equipment16, or computer and communication devices. Using

the same data as Cohen and Klepper 1996, Scherer 1983 finds that process R&D was 24.6

percent of total 1974 company-financed R&D spending. Not only that, but the National

Science Foundation estimated that in 1981 about 75% of industry R&D was directed to

product innovations (Gilbert 2006). My estimates are similar, I find that the process share

of innovations is 27.9% in 1980.

3 Describing Product and Process Innovation

3.1 Product and Process Innovation Over Time

I now turn to understanding the aggregate time trends in the process share of innovation.

Figure 3 reveals that my classification exhibits a large and secular decline in the process share
15Industries with less than 500 patents from 1980-2015 are excluded from the analysis.
164-digit SIC 3829 and 3823
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Table 3: Industries with Highest and Lowest Process Shares

SIC SIC Desc Process Share Patents
Panel A: Top 15 Process Share
1311 Crude Petroleum and Natural Gs 0.747 7,541
2911 Petroleum Refining 0.726 25,777
3720 Aircraft and Parts 0.594 2,060
3312 Steel Works and Blast Furnaces 0.568 1,038
2052 Cookies and Crackers 0.555 2,235
2000 Food and Kindred Products 0.543 874
3350 Rolling and Draw Nonfer Metal 0.530 839
3221 Glass Containers 0.525 1,256
3290 Abrasive, Asbestos, Misc Minrl 0.504 2,274
2040 Grain Mill Products 0.481 1,162
2810 Indl Inorganic Chemicals 0.429 13,718
2821 Plastics,Resins,Elastomers 0.428 5,452
2860 Industrial Organic Chemicals 0.424 23,102
2631 Paperboard Mills 0.421 2,653
3411 Metal Cans 0.419 889

Panel B: Bottom 15 Process Share
3559 Special Industry Machy, Nec 0.000 15,335
3578 Calculate, Acct Mach, Ex Comp 0.005 1,560
3579 Office Machines, Nec 0.012 3,504
3533 Oil and Gas Field Machy, Equip 0.020 1,891
3990 Misc Manufacturng Industries 0.020 3,258
3576 Computer Communications Equip 0.020 18,853
3540 Metalworking Machinery and Eq 0.021 5,193
3829 Meas and Controlling Dev, Nec 0.022 2,201
3523 Farm Machinery and Equipment 0.022 5,845
3669 Communications Equip, Nec 0.026 1,035
3651 Household Audio and Video Eq 0.027 2,413
3826 Lab Analytical Instruments 0.030 15,688
3571 Electronic Computers 0.031 13,983
3661 Tele and Telegraph Apparatus 0.031 5,256
3823 Industrial Measurement Instr 0.031 8,050

Notes: This table presents statistics on the 15 industries with the highest process
shares and the lowest process shares. Industries with less than 500 total patents
from 1980-2015 are excluded from the analysis.

of innovation which went from 26% in 1980 to 12% in 2015. This stands in contrast to the

increase in process innovation when using the data from the three USPTO classifications.

The results here are consistent with Figure 2 and the qualitative analysis of the NVIDIA
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and Monsanto patents which showed that the USPTO classification more often classifies a

firm’s products as process innovations due to the presence of process keywords.

Figure 3: Process Share Over Time

Notes: This figure shows the aggregate process share over time using the data from this paper and
the data in Banholzer et al. 2019, Bena and Simintzi 2022, and Ganglmair et al. 2022.

To better understand the time trend in the process share of innovation using this paper’s

data, I perform a within-between decomposition which seeks to address whether the decline in

the process share is due to a decline in the process share within different groups of innovative

activity or a shift towards innovation that has a lower process share. There are reasons to

suppose that the within or between components play a larger role. Figure 2 shows that the

computer & communications category of innovation has a low process share across the entire

time period. A larger share of patenting in these technological areas could cause the process

share to decline through a composition effect. On the other hand, Figure 2 shows that most

NBER categories of patenting saw a decline in the process share within their category over

time. This suggests that within effects could explain the aggregate decline.
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To formally test how much of the effect can be explained by within and between compo-

nents, I follow Baily et al. 1992 and decompose the change in the process share into within,

between, cross, entry, and exit components to Equation (1) where S,E,X respectively denote

the set of surviving groups, entering groups, and exiting groups.

∆Process Share =
∑
g∈S

∆Process Shareg × Patent Shareg,t−1+

∑
g∈S

∆Patent Shareg × Process Shareg,t−1+

∑
g∈S

∆Process Shareg ×∆Patent Shareg+

∑
g∈E

Process Shareg,t × Patent Shareg,t+

∑
g∈X

−1× Process Shareg,t−1 × Patent Shareg,t−1

(1)

The first term17 captures how much the process share changes within a group holding

its share of patents constant. The second term18 captures how much of the change in the

aggregate process share is explained by the patent share shifting to groups with different

process shares. The third term19, referred to as the cross component, captures the fact

that groups which have large changes in their process share may also have large changes

in their share of patents. The fourth term20 captures the contribution of entering groups

to the change in the process share which can conceptually be thought of as a between

change brought by new entrants. The last term21 is the exit component which measures the

contribution of exiting groups to the aggregate change in the process share.

Table 4 displays the results when the 4-digit SIC industry of the assignee firm is used as

the group variable. In 1980, the aggregate process share was 26.3%, falling to 11.7% by the
17∑

g∈S ∆Process Shareg × Patent Shareg,t−1
18∑

g∈S ∆Patent Shareg × Process Shareg,t−1
19∑

g∈S ∆Process Shareg ×∆Patent Shareg
20∑

g∈E Process Shareg,t × Patent Shareg,t
21∑

g∈X −1 ∗ Process Shareg,t−1 × Patent Shareg,t−1
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Table 4: Decomposition of Process Share Time Trends Over SIC Industry

Time Period Process Share0 Within Between Cross Entry Exit Total
1980-1985 26.34 .03 .11 -.21 .05 -.02 -.04
1985-1990 26.3 .2 -2.32 .19 0 0 -1.92
1990-1995 24.38 -.78 -3.33 .03 .01 0 -4.08
1995-2000 20.3 -.36 -.99 .5 0 -.35 -1.2
2000-2005 19.1 -2.82 -.01 -.23 .18 -.04 -2.92
2005-2010 16.18 -3.22 -.1 .4 0 -.01 -2.92
2010-2015 13.26 -1.33 -.36 .1 .01 0 -1.6
Total -8.28 -7 .78 .25 -.42 -14.68

Notes: This table presents the decomposition of the percentage point change in the mean process
share of patents into within, between, cross, entry, and exit components with 4-digit SIC industries
of the assignee firm being the group variable. Process Share0 indicates the aggregate process share
at the beginning of the time period.

end of the 2010-2015 time period, a decline of approximately 14.7 percentage points. In the

four five-year intervals going from 1980-2000, the within industry decline in the process share

was relatively small, only amounting to a 0.92 percentage point decline while the between

component accounted for 6.52 percentage points of the 7.24 percentage point decline. From

1980-2000 the cross term is negligible. The entry and exit terms are included as some

industries do not have patenting activity in a given year, but these terms are negligible as

well. The results clearly show that a reallocation of patenting activity towards industries

with lower process shares was the primary driver of the decline in the process share from

1980-2000. Table A.3 uses the NBER category of patents, which is a more broad measure

of a patent’s location in technological space, as the group measure and confirms that the

between component is responsible for the majority of the decline in the process share from

1980-2000. Table A.4 uses the firm as the group which naturally places more weight on

entry and exit as firms are more likely to enter and exit the sample than industries or NBER

categories. The results in Table A.4 highlight that a large portion of the between component

from 1980-2000 is explained by firms with large process shares exiting.

Table 4 shows that the results flip during the 2000-2015 time period when the within

component explains nearly all the decline in the process share, accounting for 7.38 percent-

age points of the 7.44 percentage point decline in the aggregate process share, indicating that

industries became less process intensive from 2000-2015. Table A.3 and Table A.4 show that
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the within component explains less of the 2000-2015 decline in the process share, indicating

that reallocation of innovative activity within industries but between NBER categories and

firms plays a role in explaining the large within component from 2000-2015. Figure A.3

presents counterfactual situations where only the within or between components are allowed

to contribute to the change in the process share, confirming that between industry realloca-

tion was the main driver of the decline from 1980-2000 while within industry declines drove

the 2000-2015 decline in the process share. Overall, the results indicate that the share of

U.S. innovation being devoted to process innovation has been falling since 1980 and that

within industry changes have been driving the recent decline in the process share.

3.2 Product and Process Innovation Over the Firm’s Life Cycle

While Section 3.1 addressed how the aggregate process share evolved over time, I now turn

to empirically examining how the process share of innovation varies over the product life cycle

of the firm. To measure where a firm is located in their product life cycle, I use the measure

from Hoberg and Maksimovic 2022 which places firm × year observations into the four stages

of the Utterback and Abernathy 1978 model: product development, process optimization,

mature product, and product decline. Hoberg and Maksimovic 2022 use the 10-K filings of

firms along with text analysis techniques in order to determine the intensity with which firms

refer to words and phrases which are associated with the four life cycle stages. Recognizing

that firms are not exclusively located in one of the four stages, Hoberg and Maksimovic 2022

instead measure each firm’s location in the product life cycle using a four-element vector,

{Product Development,Process Optimization,Mature Product,Product Decline}, where each

element in the vector corresponds to the number of paragraphs in the firm’s 10-K which are

associated with the life cycle stage, scaled by four times the summed paragraph count. The

vector sums to unity and is populated by non-negative elements which are bounded between

zero and one inclusively. The measure is only available for firms from 1997-2017, and I match

it to patents based on the patent’s year of application.

To test the whether the process share of innovation varies over the life cycle as predicted

by Klepper 1996 and Utterback and Abernathy 1975, I estimate regressions of the follow-

ing form where Process Sharepfst denotes the share of publication claims which are process
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innovations for patent p, firm f , 4-digit SIC industry s, and publication year t:

Process Sharepfst =β1Product Development + β2Mature Product+

β3Product Decline + ϕ(f, s, t) + Xft + εpfst (2)

Since the life cycle vector sums to unity, I choose the process optimization stage to serve

as the omitted category as the theories predict that firms will engage in the most process

innovation when in the process optimization life cycle stage. ϕ(f, s, t) is a set of fixed effects

which vary by specification and Xft is a vector of controls which includes a firm’s age.22

Standard errors are clustered at the firm level.

Table 5: Process Share Over the Life Cycle

Process Share

(1) (2) (3)
OLS OLS OLS

Product Development -0.061∗∗ -0.099∗∗ -0.075∗
(0.029) (0.044) (0.040)

Mature Product -0.020 -0.040∗ -0.026
(0.021) (0.023) (0.020)

Product Decline -0.019 -0.043 -0.032
(0.037) (0.036) (0.034)

Firm Age 0.005∗∗∗
(0.002)

Y 0.15 0.15 0.15
Firm FE ✓ ✓ ✓
Year FE ✓
4-digit SIC × Year FE ✓ ✓
Observations 630,690 630,690 630,690

Notes: This table presents results from estimating Equation (2)
using OLS. Standard errors are clustered at the firm level and
shown in parentheses. ∗(p<0.1), ∗∗(p<0.05), ∗∗∗(p<0.01).

22Firm age is approximated using the COMPUSTAT listing vintage.
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Column (1) of Table 5 includes firm and year fixed effects, removing time-invariant firm

heterogeneity and common annual effects. The point estimates of β1, β2, and β3 are negative

but only statistically distinguishable from zero in the case of the coefficient on product

development. The results indicate that a firm who is entirely in the product development

stage will have patents that have six percentage points lower process share. Off a mean

process share of 0.15, this would be a 40% reduction in the process share. This aligns

with Klepper 1996 and Utterback and Abernathy 1975 who hypothesize that the process

share of innovation will be lowest in the earliest stages of the life cycle when the firm has

a small scale and is focused most on product development. Next, the firm enters a stage

where they focus on process improvement and increase their scale which allows them to take

advantage of the fact that the return to process innovations increase with the size of the firm

(Cohen and Klepper 1996). The results in column (1) indicate that this omitted process

improvement stage is the stage where the process share of innovation is the highest. Next

the firm enters the mature product stage where they have large scale, which incentivizes

process innovation, but they no longer are in the stage of rapid process improvement as the

firm’s processes become more integrated and developed. Finally, the firm enters the stage

of product decline where they have even less incentive to do process innovation since their

scale begins to decline. In column (2) I tighten the specification by replacing year fixed

effects with industry × year fixed effects. In this tighter specification, the estimates become

larger in absolute value and the coefficient on the mature product stage becomes marginally

significant. The results continue to align with the hypothesis that the product development

stage will have the lowest process intensity, the process improvement stage will have the

highest process intensity, and the final two stages will have intermediate levels of process

intensity. In column (3) I control for firm age, which is related but distinct from the notion of

where the firm is in the product life cycle. The coefficient on firm age is positive and highly

significant, consistent with the hypothesis of Klepper 1996 that firms increase their process

intensity as they age. Although the life cycle estimates become less precise in column (3),

the same general pattern holds.

To examine whether the results change when using the alternate process classifications

of Banholzer et al. 2019, Bena and Simintzi 2022, and Ganglmair et al. 2022, I estimate
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Equation (2) but with the process share of each patent taken from the three alternate clas-

sifications. Table A.5, Table A.6, and Table A.7 provide the results with the coefficients

being largely statistically insignificant and positive, indicating no significant difference in

the process share of innovation as firms move through their life cycle.23 The results indicate

that using this paper’s process classification is critical for understanding how firms change

their process innovation throughout their life cycle.

One of the theorized mechanisms for why firm increase their process innovation intensity

as they move through their life cycle is the issue of scale (Klepper 1996). The returns to

process innovation are naturally increasing in the output of the firm as the firm can apply

their process innovation to a larger amount of output (Cohen and Klepper 1996). To directly

test whether this mechanism is at play, I alter Equation (2) by replacing the measures of a

firm’s position in their life cycle (Product Development, Mature Product, Product Decline)

with a measure of firm size. I expect to find a positive relationship between the size of

the firm and their process intensity. Table 6 reports the results when I use the natural

logarithm of deflated total revenue of the firm in a given year as a measure of firm size.

In column (1), the estimate on log revenue is positive and highly significant, indicating a

positive relationship between the revenue of the firm and their process intensity. Column (2)

accounts for time-varying industry heterogeneity in the process share by including industry

× year fixed effects, leaving the coefficient on log revenue materially unchanged. As firms

move through their life cycle they grow creating a correlation between firm size, age, and

product life cycle (Haltiwanger et al. 2013). In column (3), I control for a firm’s stage in

the life cycle and I continue to find a highly significant and positive relationship between

log revenue and the process share. The coefficients on the life cycle stages continue to be

negative and significant except in the case of the product decline stage, indicating that

life cycle plays an important role in determining process intensity even after controlling for

firm size. In column (4), I directly control for a firm’s age which approximately halves the

coefficient on log revenue and leaves it statistically insignificant, suggesting that while firm

size plays a role in determining the process share of a firm, the life cycle and age of the
23One marginally significant coefficient emerges on the product development stage when using the Gan-

glmair et al. 2022 classification, indicating that patenting tends to have higher process shares during the
product development stage relative to the process improvement stage.
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firm play an even more important role. Table A.8 shows that the results are robust to

using log number of employees as the measure of firm size. When using the three alternate

process classifications to examine the relationship between firm size and the process share,

I find statistically insignificant and largely negatively signed coefficients on log revenue in

Table A.9, Table A.10, and Table A.11. Again, the results indicate the distinction between

an economically grounded definition of product and process innovation and the USPTO

definition is important for understanding the relationship between firm size and the process

share. Overall, the results indicate that both firm size and a firm’s position in the life cycle

and age play an important role in determining how a firm chooses between product and

process innovation.

4 Conclusion

This paper introduces a novel measurement of a firm’s product and process innovation

using the text of patents and ML classifiers. Using this data, I document a large secular

decline in the process share of innovation from 1980-2015. I find that reallocation of patenting

activity between industries explains the decline in the process share from 1980-2000 while

within industry declines in the process share explain the decline from 2000-2015. Other

classifications, which use the USPTO definition of product and process innovation find that

the process share of innovation has been increasing over time. I provide evidence that this

discrepancy is due to innovations which are economically product innovations being marked

as process innovations due to the presence of process language.24 Next, I examine how the

process share of innovation varies over the firm’s product life cycle. I find that firms have

low process shares early in the product life cycle, followed by high process shares and then

plateauing at an intermediate process share. These findings are consistent with the life cycle

theory of Utterback and Abernathy 1975. Replicating the same empirical methodology with

the USPTO based classifications produce statistically insignificant results.

What are the causes and effects of the large decline in the process share of innovation that
24Process language refers to words or phrases such as: “a method for” which are associated with the

USPTO notion of a process innovation.
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Table 6: Process Share and Log Revenue

Process Share

(1) (2) (3) (4)
OLS OLS OLS OLS

ln(Revenue) 0.010∗∗ 0.009∗∗∗ 0.010∗∗∗ 0.004
(0.004) (0.003) (0.003) (0.003)

Product Development -0.101∗∗ -0.077∗
(0.045) (0.040)

Mature Product -0.044∗ -0.029
(0.023) (0.020)

Product Decline -0.039 -0.032
(0.035) (0.035)

Firm Age 0.005∗∗∗
(0.002)

Y 0.15 0.15 0.15 0.15
Firm FE ✓ ✓ ✓ ✓
Year FE ✓
4-digit SIC × Year FE ✓ ✓ ✓
Observations 629,733 629,733 629,733 629,733

Notes: This table presents results from estimating Equation (2) using OLS
where a measure of firm size is added. Standard errors are clustered at the
firm level and shown in parentheses. ∗(p<0.1), ∗∗(p<0.05), ∗∗∗(p<0.01).

this paper documents? In different settings Branstetter et al. 2021 and Bena and Simintzi

2022 use alternate classifications of process innovation and find negative effects of offshoring

on the process share of innovation, suggesting that the rise in U.S. offshoring may play a key

role in explaining the declining process share. A further examination of the factors which

contribute to the declining process share would be welcome.

In regard to the economic effects of this declining process share, other work has provided

evidence that process innovations generate fewer knowledge spillovers relative to product

innovations (Kotabe and Murray 1990; Kraft 1990; Ornaghi 2006; Davison 2022). Given

the importance of knowledge spillovers in driving a wedge between the social and private
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values of innovation, this decline in the process share has implications for the socially op-

timal amount of innovation (Nelson 1959). Further, for Aghion et al. 2023, the difference

in knowledge spillovers plays a key role in determining the social planner’s preference for

product innovation over process innovation. Exploring the economic implications and the

welfare effects of this decline in the process share is a rich area for future research.

How the firm innovates over its product life cycle has been highlighted as an important

factor in determining market structure and productivity growth (Dasgupta and Stiglitz 1980;

Klepper 1996; Huergo and Jaumandreu 2004; Coad et al. 2016). Given the empirical support

that this paper provides for the product life cycle theory of Utterback and Abernathy 1975

and the connection between firm size and process innovation (Cohen and Klepper 1996),

more work examining the implications of these findings would be valuable. For example,

does the path of process innovation over the product life cycle provide explanations for the

resulting market structure in industries? In addition, does the connection between firm size

and process innovation imply anything about optimal market structure? To help address

these questions and further our understanding of product and process innovation, this paper

provides a new publicly available classification of product and process innovations, referred

to as the Economically Based Product Process Patent Dataset (EPP), which will allow

researchers to make progress on these questions.
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A Appendix

A.1 Product Process Classification

The below list itemizes the elements that make up each of the 60 machine learning models

used to predict the product/process status of patent claims.

• Machine Learning Models

1. Multinomial Naive Bayes

2. Complement Naive Bayes

3. Passive Aggressive Classifier

• Text Features

1. First two words and 4-digit CPC code

2. First two words, first two words interacted with firm identifier, and 4-digit CPC

code

3. First two words, first two words interacted with 4-digit CPC code, and 4-digit

CPC code

4. First two words, first three words, ..., first ten words, and the 4-digit CPC code

5. First two words, first three words, ..., first ten words, first two words interacted

with firm identifier, first three words interacted with firm identifier, ..., first ten

words interacted with firm identifier, and the 4-digit CPC code

6. First two words, first three words, ..., first ten words, first two words interacted

with the 4-digit CPC code, first three words interacted with the 4-digit CPC code,

..., first ten words interacted with the 4-digit CPC code, and the 4-digit CPC code

7. Entire claims text and 4-digit CPC code

8. The abbreviated claims text (everything that comes before the first colon) and

the 4-digit CPC code
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9. The abbreviated claims text (everything that comes before the first colon), the

abbreviated claims text interacted with a firm identifier, and the 4-digit CPC

code

10. The abbreviated claims text (everything that comes before the first colon), the

abbreviated claims text interacted with the 4-digit CPC code, and the 4-digit

CPC code

• Trimming

1. Keep all features in a feature set.

2. Drop features that are below median “importance” in predicting the outcome

variable.

• Extended Text Features

1. Number of words

2. Fraction of words that are stopwords

3. Average word length

4. Fraction of words that are nouns, verbs, and adjectives

5. Number of words, fraction of words that are stopwords, average word length,

fraction of words that are nouns, verbs, and adjectives

6. Number of words, fraction of words that are stopwords, average word length,

fraction of words that are nouns, verbs, and adjectives, number of words interacted

with the 4-digit CPC code, fraction of words that are stopwords interacted with

the 4-digit CPC code, average word length interacted with the 4-digit CPC code,

fraction of words that are nouns, verbs, and adjectives interacted with the 4-digit

CPC code

7. Number of words, fraction of words that are stopwords, average word length,

fraction of words that are nouns, verbs, and adjectives, number of words interacted

with a firm identifier, fraction of words that are stopwords interacted with a firm
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identifier, average word length interacted with a firm identifier, fraction of words

that are nouns, verbs, and adjectives interacted with a firm identifier

Figure A.1: Three “Micron Technology” Patents

(a) Product




Static content addressable memory cell

Abstract

A static content addressable memory (CAM) cell. The CAM cell includes a latch having
complementary data nodes capacitively coupled to ground, first and second access transistors,
each coupled between a data node of the latch and a respective data line. The gates of each access
transistor is coupled to a word line such that when activated, the respective data node and data line
are coupled. The CAM cell further includes a match circuit coupled to one of the complementary
data nodes of the latch. The match circuit discharges a match line in response to a data value
stored at the data node to which the match circuit is coupled and compare data present on the
respective data line mismatching. Two of the CAM cells can be used to implement a full ternary
CAM cell.

Images (5)

Classifications


G11C15/043
 Digital stores in which information comprising one or more characteristic parts is
written into the store and in which information is read-out by searching for one or more of these
characteristic parts, i.e. associative or content-addressed stores using semiconductor elements
using capacitive charge storage elements

View 1 more classifications

US6952359B2
United States

 Download PDF 
  Find Prior Art 
  Similar

Inventor: Shane Ching-Feng Hu

Current Assignee
: Micron Technology Inc

Worldwide applications

2002 
 
US
 2003 
 
US
US
 2005 
 
US
 2006 
 
US
US

Application US10/712,851 events 

2002-03-08 Priority to US10/094,574

2003-11-12 Application filed by Micron Technology Inc

2004-05-20 Publication of US20040095793A1

2005-10-04 Application granted

2005-10-04 Publication of US6952359B2

2022-03-08 Anticipated expiration

Status Expired - Fee Related

Show all events

Info: Patent citations (59), Non-patent citations (5), Cited by (32)
, Legal events, Similar documents, Priority and Related
Applications

External links: USPTO, USPTO PatentCenter, USPTO
Assignment, Espacenet, Global Dossier, Discuss

Claims (45) Hide Dependent 

 Patents US6952359 


(b) Process




Thermal conditioning apparatus

Abstract

A wafer support including a plate having a top surface and a lift element opening extending trough
said plate. The support also includes a support member adjacent the top surface having a proximal
end, a distal end and a bore from the proximal to the distal end and a vacuum source in
communication with the bore. The support furthermore includes a lift element having a contacting
end disposed through the lift element opening and a drive coupled to at least one of the plate and
the lift element.

Images (7)

Classifications


H01L21/68742
 Apparatus specially adapted for handling semiconductor or electric solid state
devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers
during manufacture or treatment of semiconductor or electric solid state devices or components ;
Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical
means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
characterised by a lifting arrangement, e.g. lift pins

View 7 more classifications

US6051074A
United States

 Download PDF 
  Find Prior Art 
  Similar

Inventor: Timothy A. Strodtbeck, John S. Molebash, Bruce L.
Hayes, Rex A. Smith, Shawn D. Davis

Current Assignee
: Micron Technology Inc

Worldwide applications
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2000-04-18 Application granted
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Status Expired - Lifetime
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External links: USPTO, USPTO PatentCenter, USPTO
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Claims (18) Hide Dependent 

What is claimed is:

 Patents US6051074 


(c) Product & Process




Low voltage CMOS differential amplifier

Abstract

A low voltage CMOS differential amplifier is provided. More specifically, in one embodiment, there is
provided a method of manufacturing a device comprising coupling a fixed biased transistor in
parallel to a self-biased transistor and configuring the fixed biased transistor and the self-biased
transistor to provide a current to a differential amplifier, wherein the fixed biased transistor is
configured to provide current to the differential amplifier when the self-biased transistor is operating
in a triode or cut-off region.

Images (4)

Classifications


H03F3/45183
 Long tailed pairs

View 6 more classifications

US7271654B2
United States

 Download PDF 
  Find Prior Art 
  Similar

Inventor: Sugato Mukherjee, Yangsung Joo

Current Assignee
: Micron Technology Inc

Worldwide applications
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US
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US
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US
US
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2007-09-18 Application granted
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2024-12-23 Anticipated expiration

Show all events
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External links: USPTO, USPTO PatentCenter, USPTO
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Claims (20) Hide Dependent 

1. A method of manufacturing a device comprising:

 Patents US7271654 


Notes: This figure depicts the Google Patents webpages for three Micron Technology patents. Panel (a)
depicts a product patent, US6952359. Panel (b) depicts a process patent, US6051074. Panel (c) depicts a
patent that contains both product and process innovations, US7271654.
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Table A.1: Defining Manufacturing Firms

SIC Definition

Not Mfn Mfn

Business Segment Not Mfn 1,087 127
Sales Definition Mfn 215 3,583

Notes: This table presents a cross-tabulation on the number of firms defined as
manufacturing firms according to a SIC definition which defines all firms with
primary SIC industry 2000-3999 as manufacturing firms and using a business
segment sales definition that is outlined in the body of the paper.

Figure A.2: Diagnostic Statistics Over Time

Notes: This figure shows the weighted average of the correlation coefficient and balanced accuracy
over time where the weights correspond to the number of patents in the industry from 1980-2015.
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A.2 Product and Process Innovation Over Time

Table A.2 presents results from estimating Equation (A.1) via OLS where the dependent

variable is the process share of patent p, assigned to firm f , in 4-digit SIC industry s, CPC

subclass c, and published in year t and standard errors are robust:

Process Sharepfsct =β1Time Trendt + β2Time Trendt × 1{Year ≥ 2000}+ (A.1)

β31{Year ≥ 2000}+ ϕ(s, f, c) + εpfsct

ϕ(s, f, c) are fixed effects which vary by specification and depend on industry, firm, and

CPC subclass. β1 captures the average annual change in the process share from 1980-2015

while β2 captures how the time trend differs during the 2000-2015 time period. Table A.2

presents the results with column (1) showing a strong negative time trend. On average,

the aggregate process share falls by approximately 0.5 percentage points a year. In column

(2) when industry fixed effects are included the coefficient halves. Column (3) reveals that

within industry there is a significant decline in the process share after 2000 but not before.

While less pronounced, the results in columns (4) and (5) tell a similar story when firm and

CPC subclass fixed effects are used.
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Table A.2: Process Share Time Trend

Process Share × 100

(1) (2) (3) (4) (5)
OLS OLS OLS OLS OLS

Time Trend -0.484∗∗∗ -0.249∗∗∗ -0.018∗ -0.066∗∗∗ -0.106∗∗∗
(0.004) (0.004) (0.010) (0.011) (0.009)

Time Trend × 1{Year ≥ 2000} -0.523∗∗∗ -0.379∗∗∗ -0.136∗∗∗
(0.013) (0.014) (0.012)

Y 17.77 17.77 17.77 17.77 17.77
4-digit SIC FE ✓ ✓
Firm FE ✓
CPC Subclass FE ✓
Observations 1,023,048 1,023,048 1,023,048 1,023,048 1,023,048

Notes: This table presents results from estimating Equation (A.1) using OLS. Standard errors are robust
and shown in parentheses. ∗(p<0.1), ∗∗(p<0.05), ∗∗∗(p<0.01).

Table A.3: Decomposition of Process Share Time Trends Over NBER Category

Time Period Process Share0 Within Between Cross Entry Exit Total
1980-1985 26.34 .88 -.84 -.08 0 0 -.04
1985-1990 26.3 -.67 -1.33 .08 0 0 -1.92
1990-1995 24.38 -1.98 -2.24 .14 0 0 -4.08
1995-2000 20.3 1.01 -2.54 .34 0 0 -1.2
2000-2005 19.11 -1.34 -1.66 .08 0 0 -2.92
2005-2010 16.18 -2.36 -.78 .22 0 0 -2.92
2010-2015 13.26 -.9 -.6 -.09 0 0 -1.6
Total -5.36 -9.99 .69 0 0 -14.68

Notes: This table presents the decomposition of the percentage point change in the mean process
share of patents into within, between, cross, entry, and exit components with the assignee firm
being the group variable. Process Share0 indicates the aggregate process share at the beginning
of the time period.
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Table A.4: Decomposition of Process Share Time Trends Over Firm

Time Period Process Share0 Within Between Cross Entry Exit Total
1980-1985 26.34 -.13 1.2 -.41 .69 -1.39 -.04
1985-1990 26.3 .22 .83 -.09 .69 -3.58 -1.92
1990-1995 24.38 -.54 -4.45 .44 1.35 -.88 -4.08
1995-2000 20.3 -.79 1.5 .04 1.07 -3.02 -1.2
2000-2005 19.11 -1.66 -1.53 .35 1.01 -1.08 -2.92
2005-2010 16.18 -2.03 -.19 .29 .23 -1.23 -2.92
2010-2015 13.26 -1.82 .87 -.02 .6 -1.24 -1.6
Total -6.75 -1.77 .6 5.64 -12.42 -14.68

Notes: This table presents the decomposition of the percentage point change in the mean process
share of patents into within, between, cross, entry, and exit components with the assignee firm being
the group variable. Process Share0 indicates the aggregate process share at the beginning of the
time period.

Figure A.3: Within and Between Components of the Process Share Over Time

Notes: This figure shows the aggregate process share over time along with how the aggregate pro-
cess share would have evolved if only the “within” (red dashed line) or “between” (green dash-dot line)
components were active.
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A.3 Product and Process Innovation Over the Firm’s Life Cycle

Table A.5: Process Share Over the Life Cycle (Banholzer et al. 2019)

Process Share (Banholzer et al. 2019)

(1) (2) (3)
OLS OLS OLS

Product Development 0.035 0.027 0.008
(0.026) (0.029) (0.026)

Mature Product 0.010 0.026 0.016
(0.025) (0.022) (0.021)

Product Decline -0.006 -0.015 -0.024
(0.049) (0.039) (0.035)

Firm Age -0.004∗∗
(0.002)

Y 0.37 0.37 0.37
Firm FE ✓ ✓ ✓
Year FE ✓
4-digit SIC × Year FE ✓ ✓
Observations 623,580 623,580 623,580

Notes: This table presents results from estimating Equation (2) using OLS.
Standard errors are clustered at the firm level and shown in parentheses.
∗(p<0.1), ∗∗(p<0.05), ∗∗∗(p<0.01).

42



Table A.6: Process Share Over the Life Cycle (Bena and Simintzi 2022)

Process Share (Bena and Simintzi 2022)

(1) (2) (3)
OLS OLS OLS

Product Development 0.041 0.036 0.016
(0.028) (0.031) (0.028)

Mature Product 0.019 0.030 0.019
(0.022) (0.022) (0.021)

Product Decline 0.007 -0.003 -0.011
(0.050) (0.041) (0.037)

Firm Age -0.004∗∗
(0.002)

Y 0.37 0.37 0.37
Firm FE ✓ ✓ ✓
Year FE ✓
4-digit SIC × Year FE ✓ ✓
Observations 630,690 630,690 630,690

Notes: This table presents results from estimating Equation (2) using OLS.
Standard errors are clustered at the firm level and shown in parentheses.
∗(p<0.1), ∗∗(p<0.05), ∗∗∗(p<0.01).
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Table A.7: Process Share Over the Life Cycle (Ganglmair et al. 2022)

Process Share (Ganglmair et al. 2022)

(1) (2) (3)
OLS OLS OLS

Product Development 0.042∗ 0.026 0.018
(0.025) (0.027) (0.025)

Mature Product 0.014 0.022 0.017
(0.024) (0.020) (0.019)

Product Decline 0.024 -0.013 -0.016
(0.044) (0.035) (0.033)

Firm Age -0.002
(0.002)

Y 0.36 0.36 0.36
Firm FE ✓ ✓ ✓
Year FE ✓
4-digit SIC × Year FE ✓ ✓
Observations 630,690 630,690 630,690

Notes: This table presents results from estimating Equation (2) using OLS.
Standard errors are clustered at the firm level and shown in parentheses.
∗(p<0.1), ∗∗(p<0.05), ∗∗∗(p<0.01).
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Table A.8: Process Share and Log Number of Employees

Process Share

(1) (2) (3) (4)
OLS OLS OLS OLS

ln(Employees) 0.009 0.010∗ 0.012∗∗ 0.005
(0.006) (0.006) (0.005) (0.005)

Product Development -0.102∗∗ -0.078∗
(0.046) (0.041)

Mature Product -0.044∗ -0.028
(0.024) (0.021)

Product Decline -0.040 -0.032
(0.034) (0.034)

Firm Age 0.005∗∗∗
(0.002)

Y 0.15 0.15 0.15 0.15
Firm FE ✓ ✓ ✓ ✓
Year FE ✓
4-digit SIC × Year FE ✓ ✓ ✓
Observations 624,294 624,294 624,294 624,294

Notes: This table presents results from estimating Equation (2) using OLS
where a measure of firm size is added. Standard errors are clustered at the
firm level and shown in parentheses. ∗(p<0.1), ∗∗(p<0.05), ∗∗∗(p<0.01).
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Table A.9: Process Share and Log Revenue (Banholzer et al. 2019)

Process Share (Banholzer et al. 2019)

(1) (2) (3) (4)
OLS OLS OLS OLS

ln(Revenue) -0.003 -0.002 -0.003 0.002
(0.005) (0.005) (0.005) (0.004)

Product Development 0.028 0.008
(0.029) (0.027)

Mature Product 0.028 0.015
(0.022) (0.020)

Product Decline -0.017 -0.024
(0.039) (0.035)

Firm Age -0.004∗∗
(0.002)

Y 0.36 0.36 0.36 0.36
Firm FE ✓ ✓ ✓ ✓
Year FE ✓
4-digit SIC × Year FE ✓ ✓ ✓
Observations 622,632 622,632 622,632 622,632

Notes: This table presents results from estimating Equation (2) using OLS
where a measure of firm size is added. Standard errors are clustered at the
firm level and shown in parentheses. ∗(p<0.1), ∗∗(p<0.05), ∗∗∗(p<0.01).
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Table A.10: Process Share and Log Revenue (Bena and Simintzi 2022)

Process Share (Bena and Simintzi 2022)

(1) (2) (3) (4)
OLS OLS OLS OLS

ln(Revenue) -0.005 -0.003 -0.004 0.001
(0.005) (0.005) (0.005) (0.005)

Product Development 0.037 0.016
(0.031) (0.028)

Mature Product 0.032 0.018
(0.022) (0.021)

Product Decline -0.005 -0.012
(0.041) (0.037)

Firm Age -0.005∗∗
(0.002)

Y 0.37 0.37 0.37 0.37
Firm FE ✓ ✓ ✓ ✓
Year FE ✓
4-digit SIC × Year FE ✓ ✓ ✓
Observations 629,733 629,733 629,733 629,733

Notes: This table presents results from estimating Equation (2) using OLS
where a measure of firm size is added. Standard errors are clustered at the firm
level and shown in parentheses. ∗(p<0.1), ∗∗(p<0.05), ∗∗∗(p<0.01).
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Table A.11: Process Share and Log Revenue (Ganglmair et al. 2022)

Process Share (Ganglmair et al. 2022)

(1) (2) (3) (4)
OLS OLS OLS OLS

ln(Revenue) -0.002 -0.001 -0.002 0.000
(0.005) (0.004) (0.004) (0.004)

Product Development 0.027 0.019
(0.027) (0.025)

Mature Product 0.023 0.017
(0.020) (0.019)

Product Decline -0.014 -0.017
(0.035) (0.033)

Firm Age -0.002
(0.002)

Y 0.36 0.36 0.36 0.36
Firm FE ✓ ✓ ✓ ✓
Year FE ✓
4-digit SIC × Year FE ✓ ✓ ✓
Observations 629,733 629,733 629,733 629,733

Notes: This table presents results from estimating Equation (2) using OLS
where a measure of firm size is added. Standard errors are clustered at the
firm level and shown in parentheses. ∗(p<0.1), ∗∗(p<0.05), ∗∗∗(p<0.01).
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