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Abstract

This paper provides evidence that product innovations generate more knowledge
spillovers than process innovations. I measure the existence of knowledge spillovers
using patent-to-patent citations, the text of patents, and by measuring the stock of
product and process R&D available to a firm. I find that product patents generate
more citations and that the novel text in product patents is more likely to be reused
relative to process patents. The result is robust a rich set of controls and heterogeneity
analysis reveals that the gap in product and process knowledge spillovers widens for
innovations that are novel or occurring in rapidly evolving areas of technology. I also find
that when the stock of product (process) R&D available to a firm increases, patenting
at the firm increases (decreases).
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1 Introduction

Knowledge is a cumulative process. The knowledge produced in the present is built upon,

resulting in future innovation. Due to imperfections in the market for ideas, firms often use

the knowledge of other firms without compensating the firm who created the knowledge.

These knowledge spillovers cause the social value of R&D effort to exceed the private value,

leading to under-investment in the creation of knowledge (Nelson 1959). This has been used

as one of the primary justifications for government intervention in the market for ideas. Yet

there are many different types of innovative knowledge. Firms engage in product innovation

by introducing new product varieties, and they also introduce process innovations by altering

the assembly of their products.

These different types of knowledge may have different information properties, causing

them to generate different amounts of knowledge spillovers (Kraft 1990; Kotabe and Murray

1990). A long standing hypothesis has been that product innovations generate more knowl-

edge spillovers since they are available for purchase and can be reverse-engineered. On the

other hand, process innovations are supposed to be more internally focused and less visi-

ble, resulting in fewer knowledge spillovers. Despite the importance of knowledge spillovers

for creating optimal innovation policy, we have very little evidence on whether product or

process innovations generate more knowledge spillovers. The evidence on this topic has

remained sparse largely for two reasons. First, is the lack of large-scale, high quality data

distinguishing product and process innovation. Second, is finding the right empirical strategy

to address the question.

This paper addresses both gaps in the literature and provides novel evidence that product

innovations generate more knowledge spillovers than process innovations. I use data from

Davison 2022, which distinguishes patents as product or process innovations for all patents

granted to U.S. manufacturing firms from 1980-2015. With this data, I measure knowl-

edge spillovers in several ways. First, I rely on patent-to-patent citations as a measure of

knowledge flows (Jaffe, Trajtenberg, and Henderson 1993). Next, I utilize the novel keyword

combinations of patents to characterize the unique components that make up the invention

(Arts, Cassiman, et al. 2018). For example, the patent associated with the discovery of
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HIV has the novel keyword combination “virus hiv-2” which was reused in 403 subsequent

patents. When a novel keyword combination of a patent is reused in another patent, I take

this as evidence that a knowledge flow took place. I find that product patents generate more

citations and have higher average reuse of their novel content. The finding holds when I

control for firm and year fixed effects, the patent’s market value, and its intellectual scope,

indicating that the result is not an artifact of product patents being more valuable, having

broader intellectual scope, or being concentrated in a particular firm or year.

In addition to measuring the quantity of knowledge flows that a patent creates, I also

explore whether other aspects a patent’s knowledge flows are consistent with product patents

generating more knowledge spillovers. For each patent, I measure the number of days it

takes for the first firm besides the firm who originated the knowledge to either cite or use

the novel content of the patent. If product patents generated more knowledge spillovers,

we would expect them to diffuse faster to rivals outside the firm (Mansfield 1985). Using

patent citations, I find evidence that it takes less time for another patent to cite a product

patent, but I find smaller and less precisely estimated effects using the text-based measure

of knowledge flows.

Process innovations have also been hypothesized to be more internally focused, being

designed around methods of production the firm has previously developed. Internally focused

innovations are less likely to generate knowledge flows since they are not as useful outside the

firm. To test this, I measure the share of citations or reuse of novel keyword combinations that

come from the firm who originated the knowledge. Using patent citations, I find evidence that

product innovations are less internally focused with a lower share of citations being made by

the firm who created the patent. The text-based methods show no sign that product patents

have different levels of internal focus.

Finally, if product innovations generate more knowledge spillovers, we would expect that

the firms who create the knowledge would have less control over who uses the knowledge.

Fadeev 2021 provides evidence that firms intentionally share their knowledge when citations

are concentrated among a single citing firm. If citations are spread out among many different

firms, this indicates unintentional knowledge flows. I measure the external concentration of

a patent using the share of citations coming from the most citing external firm. Using
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both citation and text-based measures, I find evidence that product innovations diffuse to a

broader set of external firms, relative to process innovations. Overall, the evidence suggests

that product innovations do not simply create more knowledge flows, but the knowledge they

create diffuses to a broader set of external firms.

My final way of measuring knowledge spillovers involves creating a measure of the total

pool of spillovers available to a firm in a given year. To measure the amount of knowledge

available to a firm, I use the method of Bloom et al. 2013 who rely on the patent portfolios

of firms to construct distance between firms in technological space. Using these distance

metrics and the R&D spending firms, I am able to construct proxies for the product and

process knowledge pools that are available to a firm in a given year. I find that when the pool

of product knowledge available to a firm increases, it increases the firm’s patenting activity.

In contrast, I find that firms decreases their patenting activity when the stock of process

knowledge available to the firm increases. One issue with identifying the effect of product

and process spillovers is that the innovative activity of firms is endogenous. Using federal

and state tax credits to instrument for the R&D activity of firms, I arrive at the same result

that product spillovers lead to increased innovative activity while process spillovers do not.

My result that product innovations generate more knowledge spillovers contribute to the

literature concerned with empirically measuring knowledge spillovers (Griliches 1991; Bloom

et al. 2013; Zacchia 2020; Myers and Lanahan 2021). This literature has used a variety

of empirical strategies to document that the positive externalities from knowledge spillovers

outweigh the negative externalities from business stealing which occur when the innovation of

one firm simply shifts revenue from one firm to another. This evidence supports the view that

the market will generate under-investment in innovation relative to the socially optimal level.

My research deepens our understanding of knowledge spillovers by examining how different

types of innovation generate different amounts of knowledge spillovers. The findings highlight

that product innovations generate a disproportionate amount of the knowledge spillovers that

come from innovation.

There are a few papers examining the question of whether product or process innovations

generate more knowledge spillovers. Mansfield 1985 use survey data to find that at the

median it takes 12-18 months for the nature and operation of a process innovation to diffuse
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to rivals, but only 6-12 months for the diffusion of a product innovation. Ornaghi 2006

uses data from Spanish manufacturing firms and finds that knowledge spillovers have a

larger positive effect on demand for the firm’s products than on increasing the efficiency of

production. Ornaghi 2006 take this as evidence that knowledge spillovers have a greater

impact on product innovation and that product innovation drives more knowledge spillovers.

My work brings new data and fresh empirical strategies to examine the question, confirming

the previously found result that product innovations generate more knowledge spillovers than

process innovations.

2 Patent Data

The underlying data on product and process innovation comes from other work of mine

where I classify over one million patents as product or process innovations (Davison 2022).

I define a product innovation as an innovation that describes a physical object that the firm

sells in the output market with no discussion about how the object is created. All other

innovations are defined to be process innovations. The data includes all patents granted to

U.S. publicly traded manufacturing firms from 1980-2015. To classify patents as product

or process innovations, I hand classified a sample of 14,000 patents as product or process

innovations.

To more concretely see how this works in practice, I have taken three patents granted to

Micron Technology, a firm operating in the semiconductor industry and specializing in the

production of computer memory. The semiconductor industry is highly innovative, having

the most patents of any industry in my data. As an example of a product patent, consider

US patent number 6952359, which is titled: “Static content addressable memory cell” and

pictured in Panel (a) of Figure 1.

[Figure 1 about here.]

This patent is for a content addressable memory cell, a product that Micron sells in the

output market. The motivation for the patent is described in the text of the patent which

says: “There is a...need for an alternative CAM cell design that is relatively small and yet
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has acceptably low soft-error rates.” There is no discussion of how the product is created,

making this patent a product innovation that is meant to address shortcomings in currently

available product offerings.

Now consider Panel (b) of Figure 1 which shows a different patent assigned to Micron

Technology that has the title: “Thermal conditioning apparatus.” The description of the

patent’s CPC classification reads: “Apparatus specially adapted for handling semiconductor

or electric solid state devices during manufacture or treatment thereof...” Further the patent

goes on to state: “A problem that arises with the prior art...is that when the heating or

cooling assemblies must be repaired or replaced, extensive and costly amounts of downtime

occur.” From the CPC description and the text of the patent, it is clear that this machine is

used to more effectively produce semiconductors. According to my definition this invention

is a process innovation since it describes a physical object that Micron does not sell but is

used to produce physical objects that Micron will sell.

But not all inventions are strictly product or process innovations. Consider, US patent

number 7271654, which has the title: “Low voltage CMOS differential amplifier” and is

shown in Panel (c) of Figure 1. From the title, it would appear that the patent is for an

object that Micron Technology will sell, yet the second sentence of the abstract states that:

“there is provided a method of manufacturing a device...” This indicates that the patent

contains information about how this object is constructed. In this sense, the patent has

both a product component since it describes features of a physical object that Micron will

sell, but it also has a process component since it describes how to manufacture the product.

Fortunately, the publication claims of a patent enumerate all the individual innovations that

make up the invention in the patent. Specifically, the publication claims of a patent legally

define what is protected by the patent, with each independent publication claim standing

on its own. Because dependent publication claims rely on independent publication claims, I

restrict my attention to independent publication claims. The current patent of consideration,

US patent number 7271654, has four independent publication claims, which will henceforth

be referred to as claims for brevity:

1. A method of manufacturing a device comprising...

5



2. A device comprising...

3. A method of operating a set of differential pairs comprising...

4. An input buffer comprising...

The first claim refers to a process innovation since it discusses a process used to create

an object that the firm will sell. The next three claims pertain to descriptions of the CMOS

differential amplifier, along with descriptions about how to use it. To capture the fact that

this patent contains both product and process innovations, I assign this patent a product

share of 0.75 where the product share is the proportion of a patent’s claims that are product

innovations. In the previous two examples, all the claims were either product innovations,

as in the case of the memory cell in US6952359, or process innovations as in the case of the

thermal conditioning apparatus in US6051074. I apply this method of individually classifying

patent claims as product or process innovations and then calculate a product share for each

patent. This method ensures that I capture the fact that patents can contain both product

and process innovations.

These patents also foreshadow how product and process innovations have different in-

formation properties. Process innovations such as Micron’s thermal conditioning apparatus

tend to be more internally focused, making it less likely that their knowledge leaks out to

rivals. On the other hand, product innovations, such as Micron’s memory cell, are more

easily reverse-engineered since the product is available for purchase.

After hand classifying the claims of over 14,000 patents, I use machine learning methods

combined with the text of the claims to predict the product/process status of all patent

claims that I did not hand classify.1 This gives me a product share for all 1,023,854 patents

in my original sample.
1For more details on this procedure and the quality of the classification, see Davison 2022
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3 Empirical Strategies & Results

3.1 Citation-Based Spillovers

My first approach to measuring knowledge spillovers uses patent-to-patent citations

(Jaffe, Trajtenberg, and Henderson 1993). The idea is intuitive, if a patent cites another

patent then the citation should signal that the focal patent is building upon knowledge found

in the cited patent, indicating that a knowledge flow took place. While the simplicity of mea-

surement is appealing, a small body of evidence shows that not all patent-to-patent citations

reflect genuine knowledge flows. In a survey of inventors conducted by Jaffe, Trajtenberg,

and Fogarty 2000, 38% of inventors indicated that they had learned about the cited invention

either before or during the development of their own invention. Another third learned about

the patent they cited after the development of their invention, and the remaining third were

completely unaware of the patent citation before the arrival of the survey. This suggests

that the majority of patent citations do not represent knowledge flows that are actively used

in the creation of an invention.2 Despite the issues with patent-to-patent citations, Younge

and Kuhn 2016 shows that patents which share a citation link have high levels of textual

similarity. Overall, while using patent citations is not without problems, the evidence sug-

gests that cited patents are textually similar to the focal patent and some sizeable share of

the citations represent knowledge flows that were used in the inventive process.

When a patent makes a backward citation to another patent, I take this as evidence

that the technological content of the cited patent was influential in the creation of the citing

patent. If product patents generate more knowledge spillovers, then I hypothesize that we

should see several facts emerge in the data. First, product patents should be cited more often.

Next, if it is easier for rivals to use the new knowledge generated by product innovations,

then we should see that it takes a shorter amount of time for the first external firm to cite a
2There are also concerns that patent citations are influenced by bureaucratic and strategic considerations

on the part of patent examiners, attorneys, and firms. Using granted USPTO patents from 2001-2003,
Alcácer et al. 2009 find that 40% of citations were added by patent examiners. Primae facie, it seems that
citations added by patent examiners are unlikely to represent genuine knowledge flows. While this may
be the case for many examiner citations, Lampe 2012 estimates that 20% of his sample’s citations were
strategically withheld and then added by the examiner. This suggests many patent examiner citations may
indeed reflect knowledge flows.
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product innovation where an external firm is simply any firm besides the one who created the

patent. To measure time to diffusion, I use the inverse hyperbolic sine (IHS) of the number

of days that it takes for another firm (not the firm who introduced the cited patent) to first

cite the patent. The IHS transformation approximates a natural logarithm transformation,

but allows me to retain zero values. I use the IHS transformation across specifications

for consistency of interpretation. These tests are reminiscent of Mansfield 1985 who found

that it takes a shorter amount of time for rivals to obtain information about the product

innovations of their competitors relative to process innovations. In addition, we should see

that a smaller share of the citations are made by the firm that created the cited patent.

Smaller self citation shares indicate that the innovation is relatively less useful internally.

This fits with the hypothesis that process innovations are more useful internally since they

are created around the specific manufacturing processes of a firm and may not be applicable

to other competing firms who developed a different technology for production.

My final hypothesis relates to the concentration of citations amongst external firms.

Fadeev 2021 documents the stunning fact that the majority of forward citations to highly

cited patents come from only one external firm. This concentration of citations exceeds any

reasonable expectation if citations were randomly distributed across relevant firms. He goes

on to propose that this excess concentration of forward citations indicates greater focal firm

control over who uses their knowledge. The argument is that when forward citations are

heavily concentrated with one firm, this indicates that the focal firm intentionally shared

their knowledge with that firm, theoretically due to complementarities between the firms. As

a result, I hypothesize that if firms have less control over who uses their product innovations,

then external citations should be less concentrated amongst outside firms. To measure the

external concentration of knowledge, I use the share of external citations coming from the

most citing external firm.3 This is similar to the metric used in Fadeev 2021.

I restrict my sample to only include patents that have a non-missing market value as given

by Kogan et al. 2017 because that will be a crucial control variable I use in my analysis. This

reduces my sample from 1,023,854 patents to 875,364 patents. Table 1 displays summary

statistics for the variables used in my analysis. 92% of patents in my sample receive at
3An external firm is defined as a firm that is not the firm who is assigned the cited patent.
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least one citation. The distribution of citations received is skewed with the average number

of citations received being at 18, which is approximately the value at the 75th percentile.

Around half of patents are never cited by an external firm and those that are diffuse slowly.

On average, it takes patents five years to diffuse to external firms as captured by the first

citation from an external firm. On average, 13% of citations are self citations and consistent

with the findings in Fadeev 2021, on average half of the external citations made to a patent

are made by the most citing external firm. The patents in my sample are valuable with the

average market value being approximately $15 million 1982 dollars, as given by the measure

in Kogan et al. 2017 which relies on abnormal stock returns of firms around the issuance of

a patent.

[Table 1 about here.]

For each of my four hypotheses, I use the outcome variables described above and estimate

equations of the following form via OLS:

Ypft = βProductp + ϕf + δt + Xp + εpft (1)

I observe outcomes Ypft, of patent p, where the patent is assigned to firm f , and applied

for in year t. Productp is the share of claims that are product innovations for patent p. Firm

fixed effects (ϕf ) make comparisons within firm, removing time-invariant firm heterogeneity.

These fixed effects are important to include because firms may have significant heterogene-

ity in the average number of citations they recieve per patent. If this was systematically

correlated with a firm’s product/process composition then that would bias estimates of β.

Year of application fixed effects (δt) remove annual shocks which are particularly important

to remove for several reasons. First, recent patents have less time to accumulate citations;

year fixed effects address this issue. Second, the product share of innovation has been on

a secular upward trend. Without year fixed effects, the combination of these two factors

would lead me to compare recent patents (that have higher product shares and lower time

for citations to accumulate) with older patents. This has the potential to produce a spurious

negative correlation between the product share and the number of citations. Xp is a vector of

patent level controls that I include in some specifications. The coefficient β is my coefficient
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of interest. It captures the average change in outcome Ypft for a patent with a product share

of one relative to a patent that has a product share of zero. I cluster standard errors at the

firm level to account for correlation in the error term by firm.

Table 2 displays the results. I find evidence in support of all four hypotheses. In column

(1) with firm and year fixed effects only, the estimates indicate that product patents are cited

approximately 19% more than process patents. One potential explanation of this result is

that product patents may inherently have higher value to the firms who create them. If

this were true, then the reason that product patents are cited more than process patents

could simply be because they are more valuable, not because they generate more knowledge

spillovers. To control for the value of the cited patent, I use the natural log of the estimated

market value of the patent from Kogan et al. 2017. In addition, the novel content of patents

with narrower scope is less likely to be reused since the patent’s claims don’t span a broad

domain of knowledge. If product patents systematically had broader or narrower scope,

then this would bias my estimate of whether product patents generate more knowledge

spillovers. To measure patent scope, I use the number of independent claims that the patent

makes (Marco et al. 2019). Patents with more independent claims have broader scope as

their claims cover more intellectual territory. Column (2) reveals that the main result that

product patents generate more citations is not driven by systematic differences in patent

value or scope. After controlling for the log market value and the number of independent

claims the patent makes, the coefficient on the product share decreases slightly but remains

large and precisely estimated.

Columns (3) and (4) examine how long it takes for the innovation to diffuse to external

firms. Conditional on the patent ever being cited by an external firm, product innovations

take approximately 3% less time to be cited by an external firm.4 Relative to the mean

amount of time to the first external citation, this suggests that product innovations diffuse

to external firms approximately 2 months faster than process innovations. This is consistent

with the findings in Mansfield 1985 that at the median it takes six extra months for the

nature and operation of a process innovation to diffuse to rivals, relative to a product inno-
4The sample size is halved relative to the main specification since the dependent variable can only be

calculated for patents that are cited by an external firm.
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vation. Columns (5) and (6) test the hypothesis that a smaller share of the knowledge flows

that are created by product innovations are knowledge flows that are internal to the firm.

With and without controls, the share of internal citations made to product patents are 1.4

percentage points lower than those of process patents. This constitutes approximately a 10%

decline off the mean level of 13%. This indicates that relatively more of the knowledge gen-

erated by product patents is used outside the firm who created the patent. Finally, columns

(7) and (8) examine the hypothesis that for product innovations external citations are less

concentrated amongst external firms. In column (8), with controls, the most citing external

firm makes 3.6 percentage points less of the external citations when the cited patent is a

product patent. Again, this represents a meaningful effect, a 7% decrease off the mean level

of 50%. Since a higher concentration indicates more intentional knowledge sharing (Fadeev

2021), the evidence suggests that fewer of the product innovation knowledge transmissions

are intentional. Firms appear to be less able to control who reuses their product innovations.

[Table 2 about here.]

3.2 Text-Based Spillovers

Patent-to-patent citations are not the only way of measuring knowledge flows. Recent

advancements in computing power and the proliferation text analysis methods have allowed

researchers to use textual clues in patents to infer knowledge flows (Arts, Cassiman, et al.

2018; Pezzoni et al. 2022). This is similar in spirit to the approach of using citations. When

a patent has text that is very similar to a previous patent’s text, then the probability of

a direct or indirect knowledge flow is thought to be higher. In contrast with the citation

approach, the patent text approach is more flexible as it allows for both continuous and

discrete measures of knowledge flow potential between patents.

My starting point for measuring the dissemination of knowledge using the text of patents

is a dataset provided by Arts, Hou, et al. 2021 with all unique keywords5 of each USPTO

patent filed between 1980 and Feburary 2018. Additionally, they provide a list of all novel
5“Keywords are taken from the patent’s title, abstract, and claims of the patent. Keywords are selected

by removing all numbers, one-character words, stop words from the Natural Language Toolkit (NLTK) in
the Python library, and words appearing in only one patent. In addition to natural stop words, we remove
a manually compiled list of 32,255 very common keywords.” (Arts, Hou, et al. 2021).

11



keyword combinations along with the patents that introduce them. To arrive at this list, they

calculate every pairwise combination of keywords for each USPTO patent. Note that the

arrangement of keywords in the patent’s text does not matter. Novel keywords combinations

of a patent are keyword combinations of the patent that have not been used before the patent

is filed.6 I then trace out the diffusion of these novel keyword combinations by identifying

the patents in my product/process sample that reuse previously discovered novel keyword

combinations. When a patent reuses a novel keyword combination that was previously

introduced, I take this as evidence that a knowledge flow took place.

Since my variation between product and process innovations is at the patent level and not

the novel keyword combination level, I collapse my analysis down to the patent level. This

allows me to reuse specification (1), making the results directly comparable to the patent-to-

patent citation results found in Table 2. Summary statistics for the text-based analysis are

presented in Table 3. Since some patents have more novel keyword combinations than others,

then this will mechanically induce a positive relationship between the novelty of a patent

and the number of reuses it obtains. This was similar to the concern that valuable patents

will mechanically be cited more, even if they are not generating more knowledge flows. To

address this, I scale the total number of reuses of all the patent’s novel keyword combinations

by the number of novel keyword combinations that the patent has. On average, each novel

keyword combination in a patent is reused one time. To measure time to diffusion I calculate

the number of days to the first reuse of one of the patent’s novel keyword combinations. On

average, it takes about 2.5 years for a novel keyword combination of patent to be reused by

an external firm, about half of the five years it takes for an external firm to cite a patent.

On average, each novel keyword combination of a patent has 36% of its reuses coming from

patents within the firm. The concentration of external reuse across firms is quite high, with

the average novel keyword combination of a patent having 85% of its external reuses coming

from the most reusing external firm.

[Table 3 about here.]

Table 4 displays the results from estimating equation (1) via OLS with the text-based
6The keyword combinations of patents filed before 1980 are used to establish a baseline list of keyword

combinations.
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measures of knowledge spillovers as the dependent variables. In column (1) the dependent

variable is the IHS of the average number of reuses per novel keyword combination on a

patent. Using the IHS allows me to loosely interpret results as being percentage changes in

the dependent variable while still allowing me to account for patents whose novel keyword

combination(s) are never reused. Column (1) shows that the novel keyword combinations

of product innovations are reused approximately 5% less than those of process innovations.

These results are not driven by differences in market value or patent scope, with the point

estimate remaining unchanged even with the introduction of those controls. Columns (3)-

(6) show that I do not find evidence in support of the hypothesis that the novel keyword

combinations of product innovations diffuse faster or are less likely to be reused by the

introducing firm. In columns (7) and (8), I find evidence that the concentration of reuse

among external firms is lower for product patents than process patents. Similar to the

interpretation of Table 2, the results in columns (7) and (8) suggest that firms have less

control over which external firms use their product innovations. Although the text-based

analysis does not confirm all the results I found using the citation based approach, I view

the results as generally supportive of the conclusion that product innovations generate more

knowledge spillovers relative to process innovations.

[Table 4 about here.]

3.3 Spillovers Based on Technological Proximity

Citation and text based methods of measuring knowledge spillovers rely on observing

direct links between patents that indicate the presence of a knowledge spillover. The next

approach to measuring knowledge spillovers does not look for direct evidence of spillovers, but

instead measures the potential pool of spillovers available to a firm based on the technological

proximity of firms. To implement this approach, I follow the framework of Bloom et al. 2013

(BSV) to test whether product innovations generate more knowledge spillovers than process

innovations.

To calculate the potential pool of knowledge spillovers available to a firm, I rely on the

intuitive idea that when a firm conducts R&D in an area of technology, that knowledge

13



becomes part of the spillover pool of knowledge that is available to other firms working

on the same or similar technologies. As BSV point out, knowledge spillovers are not the

only kind of spillovers, the R&D of one firm generates a negative externality through the

output market rivalry effect. When a firm conducts R&D, this can steal business from their

rivals which inflates the private return to R&D relative to the social return. Correlation

between R&D which is available as knowledge spillovers and R&D that generates output

market rivalry could bias estimates on the effect of knowledge spillovers. I measure the pool

of output market spillovers using the idea that when a firm, who sells their output in a given

industry, conducts R&D, firms operating in that same industry experience an output market

rivalry effect.

To make this more concrete, consider the case of Apple Inc. and Micron Technology.

Apple mainly designs consumer computing devices while Micron designs and produces com-

puter memory. Over the whole time period of my sample (1980-2015) Apple took out 39%

of its patents in CPC subclass G06F: “Electric Digital Data Processing.” Over this same

time period Micron Technology took out 6.5% of its patents in the same subclass (G06F).

Given this overlap in patenting activity, it is reasonable to suspect that Apple and Micron

are close enough in technological space that if one firm was able to gain access to the other’s

knowledge they would be able to profitably use that knowledge. Despite this technological

overlap, Apple and Micron compete very little in the output market. From 1980-2015, 95%

of Micron’s sales were in four digit SIC code 3674 (Semiconductors and Related Devices)

while Apple did none of its sales in this industry.

I measure how technologically close two firms are by using the distribution of a firm’s

patents across the 627 CPC subclasses which define broad areas of knowledge that the firm is

working in. For each firm, I calculate the vector Tf = [Tf1, Tf2, ..., Tf627] where each element

Tfc is the share of firm f ’s patents which fall into CPC subclass c over the 1980-2015 time

period. With each firm’s location in technological space being defined by this vector of

patenting activity, I now need to define a distance metric to capture how close firms are to

one another in technological space.

Consider two firms, i and j. One way to measure how similar the two firms’ innovation

portfolios are would be to simply take the uncentered correlation coefficient between Ti and
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Tj, as in Jaffe 1986. While this method is appealing for its ease of computation and simplicity,

it does not allow for cross CPC subclass similarities. To illustrate the point consider CPC

subclass H01G (Capacitors, rectifiers, detectors, switching devices or light-sensitive devices

of the electrolytic type) and H01H (electric switches, relays, selectors, emergency protective

devices). These two groups are clearly related to one another but the correlation coefficient

would not capture this relationship.

To incorporate these cross group relationships I use the Mahalanobis distance metric

(Mahalanobis 1936). The calculation first starts by creating TECHJ = T̃ ′T̃ where TECHJ

is an N × N (N is the number of firms in my sample) matrix containing the uncentered

correlation between firm’s technology share vectors in each element.7 Next is construction

of Ω, which is a 627 × 627 matrix where each element provides the uncentered correlation

between CPC subclass i and CPC subclass j. To create the Ω matrix, I start with matrix

X̃ = [
T(:,1)

′

(T(:,1)T(:,1)
′)1/2

,
T(:,2)

′

(T(:,2)T(:,2)
′)1/2

, ...,
T(:,627)

′

(T(:,627)T(:,627)
′)1/2

] where T(:,1) is (1, N) and lists out the

patent shares of the first CPC subclass for all firms in the sample. Intuitively, X̃ is the

normalized CPC subclass shares across firms. With X̃ in hand, Ω is calculated as Ω = X̃ ′X̃,

yielding the uncentered correlation coefficients between CPC subclasses. If CPC subclass i

and j frequently coincide within the same firm, then Ωij will be close to one. The Mahalanobis

distance matrix, TECHM , is calculated as T̃ ′ΩT̃ . Note that when Ω = I we have TECHJ =

TECHM . In this case, regardless of whether I use the Mahalanobis distance metric or the

uncentered correlation metric, the technological proximity between firms is equal to the

uncentered correlation coefficient between their CPC subclass share vector. Each element of

TECHM serves as my measure of how close two firms are to one another in technological

space. To capture the fact that two firms may be close in product innovation space but not

in process innovation, I calculate TECHM using only the product (process) patents of each

firm, yielding TECHM,PRODUCT (TECHM,PROCESS).

While firms may be close in technological space, they may or may not be product market

competitors. It is precisely this variation that is useful in distinguishing the output market

rivalry effect from knowledge spillovers. To measure the output market proximity of two

firms, I use the Compustat Segment database which decomposes firm sales in a given year

7T̃ = [ T1
′

(T1T1
′)1/2

, T2
′

(T2T2
′)1/2

, ..., TN
′

(TNTN
′)1/2

]
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across four-digit industries. For each firm-year observation in my sample, I compute the

vector Sft for firm f in year t where each element is the share of the firm’s total sales in year

t through year t − 4 which fall into four-digit SIC industry z. By using five years worth of

sales data, this creates a rolling distribution of a firm’s sales across industries which allows

firms to change in output market space through the 1980-2015 period. I follow Lucking

et al. 2019 in using this dynamic measure of a firm’s location in output market space as

firms can change their output market over time.8 For each year, I create SICM
t which is the

Mahalanobis distance matrix where each element captures how close two firms are in output

market space in year t. SICM
t is constructed in analagous fashion as TECHM , except using

rolling industry sales instead of CPC subclass patent counts to allocate shares.

These metrics give me time-invariant measures of how close each firm is to one another

in both technological and output market space. I will now describe how I use these time-

invariant measures to create time-varying and firm-specific estimates of the pools of knowl-

edge spillovers and output market rivalry R&D. First, for each firm f , I create a stock of

both product and process R&D expenditure. To do this, I take the product share of patents

for firm f and applied for in year t as a way to allocate R&D spending to product and process

spending. While it is true that the fraction of innovative output (patents) may not directly

correspond to the inputs (R&D expenditure), I follow BSV in using R&D expenditure as

a proxy for a firm’s innovative scale. In years where a firm applies for no patents but has

positive R&D spending, the mean product share for the firm across all years is imputed

in order to allocate their R&D spending. Given these flows of product and process R&D

spending, I create stocks of product and process R&D using the perpetual inventory method

with the depreciation rate (δ) = 0.15 and the real growth rate (g) = 0.05 (Hall et al. 2010).9

I measure the stock of product knowledge spillovers available to firm i in year t according

to equation (2) which calculates the weighted sum of all other firms’ product R&D stocks

where the weights are the product technological proximity between firm i and j. These
8For example, IBM started out as an IT manufacturer and now mainly sells software services. While it

is true that firms can change their location in technological space, I follow Lucking et al. 2019 in using a
static measure of a firm’s location in technological space since firms are slower to change their technological
specialities and patents are sparse for many firms.

9These parameters are most commonly used to create R&D stocks. The initial R&D stock is calibrated
to be set at the steady state level of Stock0 = R&D0

δ+g . After the initial year the stock is calculated as
Stockt = R&Dt + (1− δ)Stockt−1
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weights capture the fact that the R&D spending of firms patenting in similar areas to firm

i should be given more weight in measuring the effective pool of technology available to

the focal firm. I similarly measure process technology spillovers. Equation (3) displays the

corresponding calculation which captures the output market rivalry effect that R&D has on

a firm’s output market competitors.

Spilltech Pdtit =
∑
j ̸=i

TECHM,PRODUCT
ij ∗ Product R&D Stockjt (2)

Spillsicit =
∑
j ̸=i

SICM
ijt ∗ R&D Stockjt (3)

Notice that the stock of process and product spillover stocks available to a firm are firm

and time specific for two reasons. The time specific nature is due to the fact that both

the composition of product and process innovation being done at other firms, j, is changing

over time and the level of R&D expenditures is changing (Product R&D Stockjt). This time

variation is interacted with the firm specific Mahalanobis technological distance between firm

j and the focal firm, allowing the knowledge spillover pool to vary at the firm-year level.

With these spillover stocks in hand I would like to estimate how product and process

innovation differentially flow to technological peers and impact the innovation decision of

a firm. To examine this, I estimate regressions of the following form where ln(Yfzt) is the

natural log of outcome Yfzt, for firm f , in four-digit SIC industry z, and year t:

ln(Yfzt) = β1ln(Spilltech Prsf,t−1) + β2ln(Spilltech Pdtf,t−1)+ (4)

β3ln(Spillsicf,t−1) + Xf,t−1 + ϕf + δzt + εfzt

ln(Spillsicf,t−1) controls for the pool of output market rivalry spillovers that the firm

faces. Xf,t−1 is a vector of controls that includes variables which measure lagged innovative

activity of the firm. These variables control for any differential trajectory that firms may be

on in their innovative activity. Firm fixed effects remove time-invariant firm heterogeneity

across firms and industry by year fixed effects controls for any industry-time varying shocks

such as industry-level demand shocks As my main dependent variable, I am interested in
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measuring how the innovation of a firm responds to the amount of product and process

knowledge spillovers available to the firm. The coefficients β1 and β2 estimate the elasticity

of a firm’s innovative activity with respect to changes in the process and product knowledge

spillover pool. In the case where product innovations are more effective at creating knowledge

spillovers we should observe β1 < β2. Estimating equation (4) via OLS will result in biased

estimates of β1 and β2 due to the endogeneity of other firm’s R&D. As firms respond to

positive demand shocks, innovative activity and output will increase for the focal firm and

for other firms operating in similar technological and output market areas (Acemoglu and

Linn 2004). The inclusion of industry (four-digit SIC) by year fixed effects controls for any

industry-time varying shocks such as industry-level demand shocks. While this set of fixed

effects is quite restrictive, it cannot remove all sources of endogeneity which is likely to bias

estimates of β1 and β2 upwards.

To address these issues I use an instrumental variables strategy which relies on federal

and state R&D tax credits to generate exogenous changes in the user cost of undertaking

innovation efforts (Wilson 2009; Lucking et al. 2019). Crucially, changes in the availability

of R&D tax credits are assumed to impact the cost of R&D while not changing the benefit. I

take data from Lucking et al. 2019 on both the federal and state components of the user-cost

of R&D that a firm faces. The federal component is based the interaction between a firm’s

observable balance sheet characteristics and federal tax treatment of R&D expenditures,

while the state level component is based on the lagged ten year moving average of the

distribution of a firm’s inventors across states.10 As states change their R&D tax credit

policies, firms will vary in their ability to use these credits given their previous distribution

of R&D activity across states. To implement this instrumental variables strategy, I regress

one plus the log of product or process R&D on the federal and state user costs of R&D,

firm fixed effects, and industry-by-year fixed effects. Table A1 presents the results of this,

documenting that lower federal or state tax credits (higher user cost) lead to lower product

and process R&D spending.

I then predict the value of product or process R&D for each firm-year observation and

aggregate these measures into stocks for each firm. Next, I substitute in the predicted value
10For a detailed discussion of the construction of these measures see Lucking et al. 2019
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of the product or process R&D stock, ̂Product R&D Stockjt for Product R&D Stockjt in

equation (2) to generate the predicted pool of spillovers available to each firm. The predicted

pools of spillovers are then used to instrument for the endogenous pools of spillovers in

equation (4).

Table 5 displays the results where I use the empirical strategy outlined in equation (4)

and the outcome variable is the IHS of citation weighted patents. Column (1) examines

the effect of total technological spillovers on the patenting activity of the firm. The point

estimate on the log total knowledge spillover stock is quite large, implying an elasticity of

0.58, but the estimate is imprecisely estimated. The coefficient on the log output market

rivalry stock (Spillsicf,t−1) is significantly smaller, and also imprecisely estimated. In column

(2), I control for lags of the firm’s patenting activity, cutting the coefficients in half. In

column (3), I instrument for the endogeneous spillover stocks using the strategy outlined

previously. I find a very strong first stage relationship and similar estimates as was found in

column (2).

In columns (4)-(6) I differentiate between product and process spillovers. Across all three

specifications, the coefficient on product spillovers is large, positive and remains statistically

significant at conventional levels. This indicates that increasing the size of the available

product knowledge spillover pool leads to more innovative output for firms. The point

estimates on the pool of process innovation is the opposite, with negative and statistically

significant coefficients, even when instrumenting for the spillover pools. The Kleibergen-Paap

F-statistic, testing the joint significance of the instruments when the endogenous variables are

regressed on the instruments, eliminates concerns for weak instruments. In addition, I can

reject the equality of the coefficient on product and process spillovers across all specifications,

indicating that the effect of product knowledge spillovers on firm innovative activity is larger

than that of process knowledge spillovers.

[Table 5 about here.]

In Table 6 and Table 7, I examine whether this finding differs when product or process

citation weighted patenting is the dependent variable. When citation weighted product

patenting is the dependent variable, I find similar results using my preferred specification
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in column (6). When process innovation is the dependent variable, the results are noisier

and I am not able to distinguish between the effects of product and process spillovers with

precision. Although the approach to measuring knowledge spillovers is quite different from

using citations or patent text, the findings in this section suggest that product innovations

are much more likely to flow to technological peers and spark the creation of new innovations.

[Table 6 about here.]

[Table 7 about here.]

4 Heterogeneity

4.1 Novelty

Now that I have laid out the evidence that product patents generate more knowledge

spillovers than process patents, I turn to examining what characteristics strengthen or weaken

this effect. To do this, I return to the citation and text based empirical strategy which will

allow me to use patent-level heterogeneity in the analysis. I first examine whether the gap in

knowledge spillover generation between product and process innovation changes as patents

become more novel. Since product innovations are more easily reverse-engineered, we may

expect that the gap between product and process spillovers widens as patents become more

novel. This would be consistent with a story where novel product patents could be reverse-

engineered, albeit with slightly more difficulty than incremental product innovations. On

the other hand, a novel process innovation would be very difficult to obtain information

about, whereas an incremental process innovation would be much easier to learn about,

either through the patent text or the inventors themselves.

To test if this is the case, I augment equation (1) by fully interacting a measure of novelty

with the product share of the patent. The coefficient on the interaction term between the

product share and novelty measure reveals whether the gap in knowledge spillovers between

product and process innovations differs as the novelty measure changes. My first proxy is a

text-based measure of novelty taken from Arts, Hou, et al. 2021. The measure is constructed

by starting with the average cosine similarity of the focal patent’s text with all other patents
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filed in the five years before the focal patent. To calculate cosine similarity, each patent is

represented as a vector of 1,362,971 dimensions where each dimension corresponds to one

keyword from the entire patent corpus and its value captures the frequency of this keyword

in the particular patent document. Since novel patents will have text that is very dissimilar

to previous patents, I use one minus this measure of backward similarity as my metric of

textual novelty.

My second measure of novelty captures a different dimension of novelty. I use the “Rapidly

Evolving Technology” (RETech) metric from Bowen III et al. 2022 which measures whether

the patent pertains to a technological area that is rapidly evolving or stable. To capture

this, they measure the intensity with which a patent’s vocabulary is growing in use across all

recent and contemporary patents. The RETech measure is high if a patent uses vocabulary

that is growing rapidly in the patent corpus overall. This measure says less about the novelty

of the particular patent, but instead relates more to whether the patent is in a novel and

growing area of technology.

Table 8 displays the results from estimating equation (1) with the IHS of patent citations

and the IHS of the average number of reuses per novel combination being the dependent

variables. These two outcomes are used since they provide the most direct measures of the

number of knowledge spillovers a patent creates. In columns (1) and (3), I fully interact

the product share with the measure of textual novelty described above. In column (1) when

the citation based measure of knowledge flows is the dependent variable, I find that the

gap between the number of citations a product and process innovation create increases by

approximately five percentage points for every standard deviation increase in textual novelty.

In column (3) when I used the text-based measure of knowledge flows, I obtain a similarly

sized and positive point estimate. The results suggest that relative to process patents,

product patents generate even more knowledge spillovers when they are more novel. This is

consistent with firms being able to reverse-engineer product innovations, regardless of their

novelty, while process innovations become even more difficult to gain information about as

they become more novel.

In columns (2) and (4), I test whether the gap between product and process spillovers

is different for patents that are in rapidly evolving technological areas. As new domains of
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technology form, we may expect that firms focus on product innovations at the expense of

process innovations. This is because firms would be hesitant to invest in process innova-

tion when the technological area may quickly change and render their process innovation

obsolete. Utterback and Abernathy 1975 and Klepper 1996 find evidence in favor of this

view, showing that firms begin their life with product innovation but gradually increase

their process innovation over the life cycle. Using the citation and text-based measures of

knowledge spillovers, I find that the gap between the number of knowledge flows a product

and process innovation creates increases by approximately three to four percentage points

for every standard deviation increase in the RETech measure. This is consistent with the

view that firms place emphasis on process innovation in stable and established technologies.

[Table 8 about here.]

4.2 Firm Size

Firm size plays an important role in the product/process innovation decision of a firm

(Cohen and Klepper 1996). Ornaghi 2006 also find evidence that size plays a role in knowl-

edge diffusion, arguing that knowledge flows primarily from small firms to large firms. To

test if firm size plays a role in magnifying or weakening the gap between product and process

spillovers, I follow a similar approach as the one used in Section 4.1, but I fully interact the

product share with measures of firm size instead of novelty. My measures of firm size are the

log number of employees and the log of assets at the firm in the year the patent was applied

for. As before, I standardize these measures to have mean zero and standard deviation of one

for ease of interpretation and comparability. Columns (1) and (2) of Table 9 display results

when a citation-based measure of knowledge spillovers is the dependent variable. Whether

using employment or assets to measure firm size, I find precisely estimated null effects on the

interaction between the product share and firm size measure. This indicates that relative

to process patents, product patents do not generate different amounts of citations for large

firms. Using text-based measures of knowledge flows in columns (3) and (4) yields similar

results. The results suggest that firm size plays no direct role in explaining that product

innovations generate more knowledge spillovers than process innovations.
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[Table 9 about here.]

5 Conclusion

This paper addresses the question of whether product or process innovations generate

more knowledge spillovers. Using three distinct empirical approaches, I find evidence that

product innovations generate more knowledge spillovers than process innovations. This gap

in product and process spillovers widens for innovations that are novel or occurring in rapidly

evolving areas of technology. Preferential policy towards innovation, such as R&D tax credits,

is justified on the grounds that knowledge spillovers cause the social benefits from innovation

exceed the private benefits, a classic example of a market failure. My results indicate that

this market failure is worse for product innovations where the gap between the social and

private value is wider than the gap for process innovations. This suggest that broad based

R&D tax credits which do not account for product and process heterogeneity are likely

sub-optimal.

While my findings suggest that product innovations generate more knowledge spillovers

than process innovations, a richer understanding of the topic would include research on

whether product or process innovation are substitutes or complements. If product and

process innovations were complementary, then it would be difficult for policy to change the

product/process composition without having a detrimental effect on the total amount of

innovation occurring in the economy. On the other hand, if the two types of innovation are

substitutes, then it would be easier to effectively change the product/process composition.

An answer to the question of whether the two forms of innovation are complements or

substitutes would give us more insight into whether it is optimal to provide more generous

support for product R&D as opposed to treating product and process R&D equally. It would

also give us valuable information on how changes to the product/process composition would

alter the innovative ecosystem.

Embedding the insights from this paper and any subsequent empirical work on the topic

into a model that could assess optimal tax policy would be a valuable contribution as it

would allow us to properly assess the welfare implications of favoring product R&D over
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process R&D. This project makes an important step forward in providing answers to these

questions by documenting that product innovations generate more knowledge spillovers than

process innovations.
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Figure 1: Three “Micron Technology” Patents

(a) Product (b) Process

(c) Product & Process

Notes: This figure depicts the Google Patents webpages for three Micron Technology patents. Panel (a)
depicts a product patent, US6952359. Panel (b) depicts a process patent, US6051074. Panel (c) depicts a
patent that contains both product and process innovations, US7271654.
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Table 1: Summary Statistics for Citation Analysis

Mean St. Dev. 25% 75% Obs
1{Cites > 0} 0.92 0.27 1.00 1.00 875,082
Cites 18.25 37.02 3.00 20.00 875,082
Years to First Citation 5.34 4.89 2.07 6.92 426,622
Share Citations Own Firm 0.13 0.23 0.00 0.17 782,769
External Concentration 0.50 0.28 0.28 0.67 748,082
Market Value, 1982 (million) 15.11 37.62 2.78 13.61 875,082
# Independent Claims 2.88 2.15 2.00 3.00 875,082

Notes: is table presents summary statitistics for variables relevant to the citation anal-
ysis. 1{Cites > 0} is an indicator for whether the patent is ever cited by any patents,
the citing patent does not need to be a part of the product/process sample. Cites is
the number of citations the patent receives from all patents (the patents do not need to
be in the product/process sample). “Years to First Citation” measures the number of
years it takes for the first external firm (a firm besides the firm originating the patent)
to make a citation. Only citations made by firms in the product/process sample are
considered. “Share Citations Own Firm” is defined as the share of citations coming from
the firm assigned to the patent (all citations are considered). “Competitor Concentra-
tion” is defined as the share of citations coming from the most citing external firm (only
citations in the product/process sample are considered). Market Value 1982 (million) $
is the real market value of a patent in millions of 1982 dollars, taken from Kogan et al.
2017. # Independent Claims is the number of independent publication claims that the
patent has.
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Table 2: Citation Based Process Innovation Spillovers

ihs(Cites) ihs(Days to Share Citations External
First Citation) Own Firm Concentration

(1) (2) (3) (4) (5) (6) (7) (8)
Product 0.192∗∗∗ 0.168∗∗∗ -0.029∗∗ -0.027∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.039∗∗∗ -0.036∗∗∗

(0.017) (0.017) (0.013) (0.013) (0.005) (0.005) (0.002) (0.002)

ln(MV) 0.062∗∗∗ -0.020∗∗ 0.006∗∗∗ -0.006∗∗∗
(0.009) (0.009) (0.002) (0.001)

ln(Claims) 0.206∗∗∗ -0.022∗∗∗ -0.001 -0.026∗∗∗
(0.009) (0.004) (0.002) (0.001)

Obs 875,082 875,082 426,300 426,300 782,769 782,769 748,082 748,082
Y 0.13 0.13 0.50 0.50

Notes: The sample includes all patents in my product/process sample with non-missing control variables. “Product”
is the share of independent claims that are categorized as product innovations. ihs(Cites) is the inverse hyperbolic
sine of the number of citations the patent has received. ihs(Days to First Citation) is the IHS of the number of
days it took for the patent to receive its first external citation. External citations are made by firms other than the
firm granted the patent. “Share Citations Own Firm” is the share of citations where the cited and citing patent are
assigned to the same firm. “External Concentration” is defined as the share of external citations going to the most
citing external firm. Across the reuse measure, only patents in the product/process sample are considered except
in the case of ihs(Cites), for this variable all citations received are used. Y is the dependent variable mean. Firm
and year fixed effects of the introducing assignee are included in all regressions. Standard errors are clustered by
the at the firm level and shown in parentheses. ∗(p<0.1), ∗∗(p<0.05), ∗∗∗(p<0.01).
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Table 3: Summary Statistics for Text-Based Analysis

Mean St. Dev. 25% 75% Obs
# Novel Combos 153.03 2,814.42 2.00 74.00 864,619
# Reuses per Novel Combo 1.00 5.36 0.03 1.00 694,971
Years to First External Reuse 2.59 3.46 0.39 3.38 487,032
Share Reuses Own Firm 0.36 0.39 0.00 0.75 544,487
External Concentration 0.85 0.16 0.75 1.00 486,711

Notes: This table presents summary statistics for variables relevant to the text-based
analysis. # Novel Combos is the number of novel keyword combinations the patent
introduces. # Reuses per Novel Combo is the average number of reuses each novel
keyword combination on the patent has (only defined for those patents that have novel
keyword combinations). “Years to First Reuse” measures the number of years it takes
for the novel keyword combination to be reused by a firm other than the firm assigned
to the introducing patent. “Share Reuses Own Firm” is defined as the share of patents
reusing the novel keyword combination that were granted to the introducing patent firm.
“External Concentration” is defined as the share of external reusing patents of the most
reusing external firm where. An external firm is any firm in the product/process sample
and not the same firm as the firm assigned to the introducing patent. Across the reuse
measures, only patents in the product/process sample are considered.
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Table 4: Text Based Spillovers

ihs(Reuse per ihs(Days to Share Reuses Competitor
Novel Combo) First Reuse) Own Firm Concentration

(1) (2) (3) (4) (5) (6) (7) (8)
Product 0.050∗∗∗ 0.050∗∗∗ -0.025 0.001 0.002 0.004 -0.013∗∗∗ -0.013∗∗∗

(0.010) (0.010) (0.031) (0.031) (0.007) (0.007) (0.001) (0.001)

ln(MV) 0.019∗∗∗ -0.022∗ 0.004 -0.002∗∗
(0.005) (0.012) (0.003) (0.001)

ln(Claims) -0.002 -0.241∗∗∗ -0.019∗∗∗ -0.003∗∗∗
(0.004) (0.011) (0.003) (0.001)

Observations 694,971 694,971 486,711 486,711 544,487 544,487 486,711 486,711
Y 0.36 0.36 0.85 0.85

Notes: ihs(Reuse per Novel Combo) is the inverse hyperbolic sine of the number of average number of reuses per
novel keyword combination on the patent. ihs(Days to First Reuse) is the inverse hyperbolic sine of the number
of days it takes for the first novel keyword combination of a patent to be reused by a firm other than the firm
assigned to the introducing patent. “Share Reuses Own Firm” is defined as the average share of patents reusing
the novel keyword combination that were granted to the introducing patent firm across a patent’s novel keyword
combinations. “Competitor Concentration” is defined as the average share of external reusing patents of the most
reusing external firm across novel keyword combinations. An external firm is any firm in the product/process sample
and not the same firm as the firm assigned to the introducing patent. Across the reuse measures, only patents in the
product/process sample are considered. Firm and year fixed effects of the introducing assignee are included in all
regressions. Standard errors are clustered by firm shown in parentheses. ∗(p<0.1), ∗∗(p<0.05), ∗∗∗(p<0.01).
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Table 5: Innovation and Product/Process Technological Spillovers

ihs(CW Patents)

(1) (2) (3) (4) (5) (6)
OLS OLS IV OLS OLS IV

ln(Spilltecht−1) 0.584 0.274 0.241
(0.548) (0.364) (0.408)

ln(Spilltech Pdtt−1) 1.969∗∗∗ 1.219∗∗ 1.637∗∗∗
(0.721) (0.473) (0.572)

ln(Spilltech Prst−1) -1.106∗∗ -0.782∗∗ -1.093∗∗
(0.520) (0.355) (0.448)

ln(Spillsict−1) 0.074 0.036 0.049 0.025 0.007 0.009
(0.098) (0.066) (0.066) (0.099) (0.066) (0.066)

ln(Pdt Citest−1) 0.309∗∗∗ 0.308∗∗∗ 0.308∗∗∗ 0.307∗∗∗
(0.014) (0.014) (0.014) (0.014)

ln(Prs Citest−1) 0.180∗∗∗ 0.180∗∗∗ 0.180∗∗∗ 0.180∗∗∗
(0.013) (0.013) (0.013) (0.013)

1{No Patentt−1} -0.015 -0.012 -0.018 -0.018
(0.048) (0.048) (0.048) (0.048)

p-value (H0 : β1 = β2) .004 .005 .002
F -Stat 1,500.9 282.2
Observations 20,673 20,673 20,673 20,673 20,673 20,673

Notes: The dependent variable is the inverse hyperbolic sine of the number of citation weighted
patents firm f applies for in year t. The spillover measures are constructed according to equation
(2) and (3). The spillover measures are instrumented with the instrumental variables constructed
according to the description in the text. Standard errors are clustered by the at the firm level and
shown in parentheses. ∗(p<0.1), ∗∗(p<0.05), ∗∗∗(p<0.01).
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Table 6: Product Innovation and Product/Process Technological Spillovers

ihs(CW Pdt Patents)

(1) (2) (3) (4) (5) (6)
OLS OLS IV OLS OLS IV

ln(Spilltecht−1) 0.944∗ 0.584 0.526
(0.524) (0.355) (0.398)

ln(Spilltech Pdtt−1) 0.844 0.464 2.299∗∗
(1.059) (0.734) (1.154)

ln(Spilltech Prst−1) 0.150 0.154 -1.436
(0.847) (0.601) (0.895)

ln(Spillsict−1) 0.105 0.076 0.089 0.104 0.075 0.096
(0.103) (0.071) (0.073) (0.103) (0.071) (0.073)

ln(Pdt Citest−1) 0.304∗∗∗ 0.304∗∗∗ 0.304∗∗∗ 0.303∗∗∗
(0.015) (0.015) (0.015) (0.015)

ln(Prs Citest−1) 0.173∗∗∗ 0.173∗∗∗ 0.173∗∗∗ 0.173∗∗∗
(0.013) (0.013) (0.013) (0.013)

1{No Patentt−1} -0.022 -0.020 -0.021 -0.028
(0.047) (0.047) (0.047) (0.048)

p-value (H0 : β1 = β2) .706 .81 .064
F -Stat 1,204.2 168.9
Observations 20,685 20,685 20,685 20,685 20,685 20,685

Notes: The dependent variable is the inverse hyperbolic sine of the number of citation weighted
patents firm f applies for in year t. The spillover measures are constructed according to equation
(2) and (3). The spillover measures are instrumented with the instrumental variables constructed
according to the description in the text. Standard errors are clustered by the at the firm level and
shown in parentheses. ∗(p<0.1), ∗∗(p<0.05), ∗∗∗(p<0.01).
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Table 7: Process Innovation and Product/Process Technological Spillovers

ihs(CW Prs Patents)

(1) (2) (3) (4) (5) (6)
OLS OLS IV OLS OLS IV

ln(Spilltecht−1) 1.360∗∗∗ 1.065∗∗∗ 1.473∗∗∗
(0.413) (0.296) (0.341)

ln(Spilltech Pdtt−1) 0.614 0.360 1.024
(0.818) (0.585) (0.979)

ln(Spilltech Prst−1) 0.711 0.666 0.461
(0.653) (0.476) (0.791)

ln(Spillsict−1) -0.025 -0.036 -0.012 -0.027 -0.038 -0.013
(0.094) (0.069) (0.071) (0.094) (0.070) (0.071)

ln(Pdt Citest−1) 0.141∗∗∗ 0.141∗∗∗ 0.142∗∗∗ 0.141∗∗∗
(0.010) (0.010) (0.010) (0.010)

ln(Prs Citest−1) 0.242∗∗∗ 0.242∗∗∗ 0.242∗∗∗ 0.242∗∗∗
(0.016) (0.016) (0.016) (0.016)

1{No Patentt−1} 0.031 0.036 0.034 0.038
(0.033) (0.033) (0.033) (0.033)

p-value (H0 : β1 = β2) .95 .764 .746
F -Stat 1,204.2 168.9
Observations 20,685 20,685 20,685 20,685 20,685 20,685

Notes: The dependent variable is the inverse hyperbolic sine of the number of citation weighted
patents firm f applies for in year t. The spillover measures are constructed according to equation
(2) and (3). The spillover measures are instrumented with the instrumental variables constructed
according to the description in the text. Standard errors are clustered by the at the firm level and
shown in parentheses. ∗(p<0.1), ∗∗(p<0.05), ∗∗∗(p<0.01).
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Table 8: Heterogeneity by Novelty

ihs(Cites) ihs(Reuse Per
Novel Combo)

(1) (2) (3) (4)
Product 0.170∗∗∗ 0.170∗∗∗ 0.047∗∗∗ 0.039∗∗∗

(0.018) (0.019) (0.008) (0.010)

Text Novelty -0.067∗∗∗ 0.019∗∗∗
(0.011) (0.006)

Product × Text Novelty 0.051∗∗∗ 0.041∗∗∗
(0.014) (0.006)

RETech 0.011 0.039∗∗∗
(0.009) (0.006)

Product × RETech 0.034∗∗ 0.038∗∗∗
(0.014) (0.006)

ln(MV) 0.063∗∗∗ 0.062∗∗∗ 0.018∗∗∗ 0.019∗∗∗
(0.009) (0.009) (0.005) (0.005)

ln(Claims) 0.201∗∗∗ 0.201∗∗∗ 0.002 -0.006
(0.009) (0.010) (0.004) (0.004)

Observations 694,965 694,965 694,965 694,965

Notes: ihs(Cites) is the inverse hyperbolic sine of the number of citations the
patent has received. ihs(Reuse per Novel Combo) is the inverse hyperbolic sine
of the number of average number of reuses per novel keyword combination on
the patent. RETech is taken from Bowen III et al. 2022 and measures whether
the patent pertains to a technological area that is rapidly evolving (i.e., following
breakthroughs) or stable. Text novelty is taken from Arts, Hou, et al. 2021 and
measures one minus the average cosine similarity between the focal patent and
all other patents filed in the five years before the focal patent. Both measures
are winsorized at the 1st and 99th percentiles and standardized to have mean
zero and standard deviation one. Firm and year fixed effects of the introducing
assignee are included in all regressions. Standard errors are clustered by firm
and shown in parentheses. ∗(p<0.1), ∗∗(p<0.05), ∗∗∗(p<0.01).
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Table 9: Heterogeneity by Firm Size

ihs(Cites) ihs(Reuse Per
Novel Combo)

(1) (2) (3) (4)
Product 0.177∗∗∗ 0.177∗∗∗ 0.051∗∗∗ 0.050∗∗∗

(0.018) (0.017) (0.010) (0.010)

ln(Emp) -0.195∗∗∗ -0.135∗∗∗
(0.052) (0.036)

Product × ln(Emp) 0.001 -0.010
(0.016) (0.008)

ln(Assets) -0.161∗∗∗ -0.141∗∗∗
(0.049) (0.027)

Product × ln(Assets) -0.003 -0.003
(0.023) (0.008)

ln(MV) 0.063∗∗∗ 0.066∗∗∗ 0.019∗∗∗ 0.022∗∗∗
(0.009) (0.009) (0.004) (0.004)

ln(Claims) 0.203∗∗∗ 0.204∗∗∗ -0.003 -0.003
(0.010) (0.010) (0.004) (0.004)

Observations 674,604 674,604 674,604 674,604

Notes: ihs(Cites) is the inverse hyperbolic sine of the number of citations the
patent has received. ihs(Reuse per Novel Combo) is the inverse hyperbolic sine
of the number of average number of reuses per novel keyword combination on the
patent. Firm and year fixed effects of the introducing assignee are included in
all regressions. Standard errors are clustered by firm and shown in parentheses.
∗(p<0.1), ∗∗(p<0.05), ∗∗∗(p<0.01).
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A Appendix

[Table A1 about here.]
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Table A1: Predicting Product and Process R&D with Tax Credits

(1) (2)
ln(1 + Product R&D) ln(1 + Process R&D)

ln(Federal Tax User Cost) -3.798∗∗∗ -1.742∗∗∗
(0.512) (0.666)

ln(State Tax User Cost) -0.506∗∗∗ -0.610∗∗∗
(0.151) (0.177)

Joint F -test of the tax credits 33.03 9.51
Observations 23,357 23,357
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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